Virtual International Seminar on Theoretical Advancements

2022.3.30

Model Construction and TD-DMRG Simulation for Exciton Dynamics in Molecular Aggregated Systems

Haibo Ma

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

https://itcc.nju.edu.cn/haibo/

haibo@nju.edu.cn

Outline

Background: Exciton dynamics

Model construction

- Automatic construction of excitonic basis
- Evaluation of exciton-phonon couplings

- Quantum dynamics simulation
 - Time-dependent density matrix renormalization group (TD-DMRG)
 - Stochastic adaptive single-site TD-DMRG

Excited States in Large Photoactive Systems

Intrachain Energy Transfer in a Conjugated Polymer

E. Collini, G. D. Scholes, *Science* **2009**, 323, 369

Long-range energy transport in single supramolecular nanofibres

A. T. Haedler, et al., *Nature* **2015**, 523, 196

Both the electronic structure and quantum dynamics of large photoactive systems can hardly be simulated by standard quantum chemistry methods.

Excitonic Model Hamiltonians

Exciton: a bound electron-hole pair \rightarrow a quasi-particle

Excitonic Model Hamiltonians

To further account for the exciton-vibration couplings,

$$\begin{aligned} \widehat{H} &= \widehat{H}_{ex} + \widehat{H}_{vib} + \widehat{H}_{ex-vib} \\ \widehat{H}_{ex} &= \sum_{i=1}^{N_{ex}} \varepsilon_i \widehat{c}_i^{\dagger} \widehat{c}_i + \sum_{i \neq j} V_{ij} \widehat{c}_i^{\dagger} \widehat{c}_j \\ \widehat{H}_{ex} &= \sum_{i=1}^{N_{vib}} \varepsilon_i \widehat{c}_i^{\dagger} \widehat{c}_i + \sum_{i \neq j} V_{ij} \widehat{c}_i^{\dagger} \widehat{c}_j \\ \widehat{H}_{vib} &= \sum_{I=1}^{N_{vib}} \omega_I \widehat{b}_I^{\dagger} \widehat{b}_I \\ \widehat{H}_{ex-vib} &= \sum_{i,j,l} g_{ij}^{I} \widehat{c}_i^{\dagger} \widehat{c}_j (\widehat{b}_I^{\dagger} + \widehat{b}_I) + \sum_{i,j,l,j} g_{ij}^{IJ} \widehat{c}_i^{\dagger} \widehat{c}_j (\widehat{b}_I^{\dagger} + \widehat{b}_I) (\widehat{b}_J^{\dagger} + \widehat{b}_J) \end{aligned}$$

Challenges:

- **1.** <u>Model construction</u>: How to build the basis and evaluate the parameters?
- 2. <u>Quantum dynamics</u>: How to simulate strongly correlated systems with large N_{vib}?

Basis Selection

Numerical renormalization group (NRG)

K. G. Wilson, Phys. Rev. B 1971, 4, 3174. (1982 Nobel prize in physics)

Keep only *M* energetically lowest states

NRG works well in weakly correlated systems, but fails in moderately and strongly correlated systems.

NRG basis describes the intersubsystem boundaries poorly. S. White, *Phys. Rev. Lett.* **1992**, 69, 2863.

Renormalized Excitonic Model (REM)

H. Zhang, J. P. Malrieu, **H. Ma**, J. Ma, *J. Computat. Chem.* **2012**, 33, 34. Y. Ma, Y. Liu, **H. Ma**, *J. Chem. Phys.* **2012**, 136, 224412.

Renormalized Excitonic Model (REM)

Examples:

Excitation energy (S₁) in benzene crystal (eV)

system	one-column	two-column	three-column	four-column
REM-TDDFT	5.682	5.664	5.660	5.660
TDDFT	5.685	5.671	5.672	5.672
Δ	-0.003	-0.007	-0.012	-0.012
	11.01.0.1	1 1 1	1	

^{*a*}The LC-BLYP/6-31G is used in the calculations.

Y. Ma, H. Ma, J. Phys. Chem. A 2013, 117, 3655.

DOS for charge transfer states in tetracene/PTCDA interface

H. Ma, A. Troisi, *Adv. Mater.* 2014, 26, 6163.
W. Li, H. Ma, S. Li, J. Ma, *Chem. Sci.* 2021, 12, 14987.

Using quantum information theory (QIT) to construct excitonic basis (block interaction product state, BIPS) automatically →Measure system-environment entanglement by the eigenvalues of reduced density matrix (RDM)

K. Wang, Z. Xie, Z. Luo, H. Ma, J. Phys. Chem. Lett. 2022, 13, 462.

9

	А	В	С	D			n-BIPSs	<i>c</i> -BIPSs
Etł	2.0	Å	j	j			$ \begin{array}{c} \psi_A^* \psi_B^0 \psi_C^0 \psi_D^0 \rangle \\ \psi_A^0 \psi_B^* \psi_C^0 \psi_D^0 \rangle \\ \psi_A^0 \psi_B^0 \psi_C^* \psi_D^0 \rangle \\ \psi_A^0 \psi_B^0 \psi_C^0 \psi_D^* \rangle \end{array} $	
	2.5	Å				{	$\begin{array}{c} \psi_{A}^{*} \psi_{B}^{0} \psi_{C}^{0} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{*} \psi_{C}^{0} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{0} \psi_{C}^{*} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{0} \psi_{C}^{0} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{0} \psi_{C}^{0} \psi_{D}^{*} \end{array}$	$egin{aligned} & \psi_A^+ \psi_B^- \psi_C^0 \psi_D^0 \ & \psi_A^0 \psi_B^0 \psi_C^- \psi_D^+ \ \end{aligned}$
Ac	etonitrile					ſ		$ _{2} _{1}^{+} _{1}^{-} _{1}^{0} _{2} _{1}^{0}$
Wa	1.85 nter	Å			→		$ \begin{array}{c} \psi_{A}^{*} \psi_{B}^{0} \psi_{C}^{0} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{*} \psi_{C}^{0} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{0} \psi_{C}^{*} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{0} \psi_{C}^{0} \psi_{D}^{0} \\ \psi_{A}^{0} \psi_{B}^{0} \psi_{C}^{0} \psi_{D}^{0} \\ \end{array} $	$ \begin{vmatrix} \psi_A & \psi_B \psi_C & \psi_D \\ \psi_A^- & \psi_B^+ \psi_C^0 & \psi_D^0 \\ \end{vmatrix} $ $ \begin{vmatrix} \psi_A^0 \psi_B^+ & \psi_C^- & \psi_D^0 \\ \psi_A^0 & \psi_B^- & \psi_C^+ & \psi_D^0 \\ \end{vmatrix} $ $ \begin{vmatrix} \psi_A^0 & \psi_B^0 & \psi_C^+ & \psi_D^- \\ \end{vmatrix} $ $ \begin{vmatrix} \psi_A^0 & \psi_B^0 & \psi_C^+ & \psi_D^- \\ \end{vmatrix} $
BI	PS can au bases for	itomatica different	ally cons ⁻ t aggrega	truct exc	citonic ems.	l		Ψ _Ă Ψ _Ď Ψ _C Ψ _Ď)

K. Wang, Z. Xie, Z. Luo, H. Ma, J. Phys. Chem. Lett. 2022, 13, 462.

- BIPS accuracy remains within the maximum deviation of 7 meV.
- BIPS exhibits almost linear growth in time consumption.

K. Wang, Z. Xie, Z. Luo, H. Ma, J. Phys. Chem. Lett. 2022, 13, 462.

BIPS can correctly mimic the energetic fluctuations under different distorted geometries.

	H ₂ O ($d = 1.85$ Å) d CH ₃ OH ($d = 2.80$ Å) d d d d d d d d		CH ₂ O $(d = 2.36$ Å) d f		$\mu = \langle \Psi^* \sum_i q_i \hat{\boldsymbol{r}}_i \Psi^* \rangle$ $\mu^{\mathrm{T}} = \langle \Psi^0 \sum_i q_i \hat{\boldsymbol{r}}_i \Psi^* \rangle$ $\mu^{\mathrm{T}} \neq \lambda_i u_i$	
	$\frac{C_{2}H_{3}N (d = 3.50 \text{ Å})}{\Delta E_{c} / \text{eV}}$		$CO_2 (d = 3.00 \text{ Å})$			
	Reference	$\delta(3)$	Reference	$\delta(3)$	Reference	$\delta(3)$
$(H_2O)_4$	9.1463	0.0112	2.7817	0.0288	0.3091	0.0307
$(CH_2O)_4$	4.5691	0.0286	4.5822	0.0071	0.0014	0.0006
$(CH_3OH)_4$	8.4042	0.0094	2.6123	0.0006	0.0415	0.0069
$(\mathrm{NH}_3)_4$	7.9446	0.0120	1.8979	0.0062	0.6309	0.0107
$(C_2H_3N)_4$	7.6922	0.0260	5.4202	0.0098	0.0074	0.0033
$(\mathrm{CO}_2)_4$	9.6696	0.0065	0.0001	0.0001	0.0000	0.0000

BIPS provides accurate descriptions for both <u>excitation energies</u> and first-order <u>wave function properties</u>.

14

K. Wang, Z. Xie, Z. Luo, **H. Ma**, *J. Phys. Chem. Lett.* **2022**, 13, 462.

Evaluation of Exciton-Phonon Couplings

<u>Direct scanning under linear approximation</u>

$$g_{i}^{I} = \frac{\partial \varepsilon_{i}}{\partial Q_{I}}$$
$$g_{ij}^{I} = \frac{\partial V_{ij}}{\partial Q_{I}}$$

• Vibration modes in molecule:

 $3N_{\text{atom}} - 6(5)$

• Phonon modes in crystal:

H. Tamura, et al., *Phys. Rev. Lett.* **2015**, 115, 107401.

infinitely many (especially low-frequency ones)

Due to the too many phonon modes in condensed phase, computational costs of direct scanning are unaffordable!

Evaluation of Exciton-Phonon Couplings

bc plane of rubrene crystal

X. Xie, A. Santana-Bonilla, A. Troisi, J. Chem. Theory Comput. 2018, 14, 3752

Scanning costs: $\infty \rightarrow 3N_{\text{atom}}^{\text{system}}$

16

X. Xie, A. Santana-Bonilla, W. Fang, C. Liu, A. Troisi, H. Ma, J. Chem. Theory Comput. 2019, 15, 3721

Evaluation of Exciton-Phonon Couplings

Example: Non-local ex-ph coupling (CT-TT) of singlet fission (SF) in rubrene

Exp: K. Miyata, et. al. *Nat. Chem.* **2017**, 9, 983.

- 1. Contribution: Low-frequency > High frequency (T= 300 K)
- 2. Crystal environment is important for SF in rubrene

X. Xie, A. Santana-Bonilla, W. Fang, C. Liu, A. Troisi, H. Ma, J. Chem. Theory Comput. 2019, 15, 3721

Outline

Background: Exciton dynamics

- Model construction
 - Automatic construction of excitonic basis
 - Evaluation of exciton-phonon couplings

- Quantum dynamics simulation
 - Time-dependent density matrix renormalization group (TD-DMRG)
 - Stochastic adaptive single-site TD-DMRG

Matrix Product State (MPS)

Decomposition of high-rank tensor

Density Matrix Renormalization Group (DMRG) optimize **M** matrices iteratively

S. White, *Phys. Rev. Lett.* **1992**, 69, 2863. U. Schollwöck, *Rev. Mod. Phys.* **2005**, 77, 259.

Time-Dependent DMRG (TD-DMRG)

Time-Dependent DMRG (TD-DMRG)

Reviews: Paeckel, et al., Ann. Phys. **2019**, 411, 167998.

Ren, Li, Jiang, Wang, Shuai, WIREs ComputMol Sci. 2022, doi: 10.1002/wcms.1614.

Time-Dependent Variational Principle (TDVP)

Time evolution

$$\widehat{H}|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

variational optimization

Minimize $\|\widehat{H}|\psi(t)\rangle - i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle\|^2$

optimize the basis in which truncated space?

Tangent space

 \hat{P}_T is called **tangent space projection operator**, which can project the wave function into the space defined by $\frac{\partial \psi}{\partial M_j}$. (full: $d^L \rightarrow$ projection: dD^2)

The final evolution function:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{P}_T \hat{H} |\psi(t)\rangle$$

Haegeman, et al., *Phys. Rev. Lett.* **2011**, 107, 070601. Haegeman, et al., *Phys. Rev. B* **2016**, 94, 165116.

Time-Dependent Variational Principle (TDVP)

 \hat{P}_T in the MPS language (**one-site algorithm**):

$$\hat{P}_T = \sum_{j=1}^n \hat{P}_{j-1}^L \otimes \hat{I}_j \otimes \hat{P}_{j+1}^R - \sum_{j=1}^{n-1} \hat{P}_j^L \otimes \hat{P}_{j+1}^R$$

$$|\psi\rangle = \sum_{n_1\cdots n_L} \mathbf{M}_1^{n_1} \mathbf{M}_2^{n_2} \cdots \mathbf{M}_L^{n_L} |n_1, n_2, \cdots, n_L\rangle$$

Single time step

= n steps of forward evolution
+ n-1 steps of backward evolution

Single-Site vs. Two-Site

\widehat{P}_T (two-site algorithm)

 $T_{i,i+1}$

1TDVP vs. 2TDVP

Test of efficiency and accuracy (model: the 4-mode pyrazine)

1TDVP is faster, but its error is uncontrollable at long time limit.

Entanglement Growth during Time Evolution

The entanglement grows as time evolves, so the adaptive increasing of *m* in MPS is needed.

1TDVP vs 2TDVP

(1)

(2) How to set the *m* or make *m* increase automatically in 1TDVP?

Xie, Liu, Yao, Schollwöck, Liu, Ma, J. Chem. Phys. 2019, 151, 224101.

New adaptive 1TDVP method is needed.

Adaptive 1TDVP

Global treatment

Yang, White, *Phys. Rev. B* **2020**, 102, 094315.

Local treatment

Dunnett, Chin, *Phys. Rev. B* **2021**, 104, 214302.

Both need additional expensive $\widehat{H}|\psi\rangle$ operations.

Statistical Distribution of Singular Values in TD-DMRG

Distributions of 2nd order singular value logarithms show similar features in different models. (exponential? Gaussian?)

Xu, Xie, Xie, Schollwöck, Ma, JACS Au 2022, 2, 335.

Derivation of exponential distribution

For
$$\Delta_2 s = \Delta s_{n+1} - \Delta s_n$$

$$P(\Delta_2 s)d(\Delta_2 s) = \int_0^{+\infty} d(\Delta s_n) \int_0^{+\infty'} d(\Delta s_{n+1}) \beta^2 e^{-\beta \Delta s_n} e^{-\beta \Delta s_{n+1}}$$

$$= \int_{\max(0,\Delta_2 s)}^{+\infty} d(\Delta s_n) \beta^2 e^{-\beta \Delta s_n} e^{-\beta (\Delta_2 s + \Delta s_n)} d(\Delta_2 s)$$

$$P(\Delta_2 s) = \frac{\beta}{2} \exp(-\beta |\Delta_2 s|)$$

Random Matrix Theory (RMT): Coupled random events

Random matrix

distribution of eigenvalues

distribution of level spacings

Wigner surmise: $P(\Delta s) = \Delta s e^{-\frac{1}{2}(\Delta s)^2}$

E. P. Wigner, Ann. Math. 1955, 62, 548; 1958, 67, 325.

Derivation of Quasi-Gaussian distribution

For level spacing Δs_n in RMT, **Wigner surmise** gives: $P(\Delta s_n) = \beta \Delta s_n e^{-\frac{\beta}{2}(\Delta s_n)^2}$

one can derive the distribution of 2nd order gradients:

$$P(\Delta_2 s)d(\Delta_2 s) = \beta^2 \int_0^{+\infty} d(\Delta s_n) \int_0^{+\infty} d(\Delta s_{n+1}) \Delta s_n \Delta s_{n+1} e^{-\frac{\beta}{2}(\Delta s_n)^2} e^{-\frac{\beta}{2}(\Delta s_{n+1})^2}$$
$$= \beta^2 d(\Delta_2 s) \int_0^{+\infty} d(\Delta s_n) \Delta s_n (\Delta s_n + \Delta_2 s) e^{-\frac{\beta}{2}(\Delta s_n)^2} e^{-\frac{\beta}{2}(\Delta s_n + \Delta_2 s)^2}$$
$$= \beta^2 d(\Delta_2 s) e^{-\frac{\beta}{4}(\Delta_2 s)^2} \int_{\frac{\Delta_2 s}{2}}^{+\infty} dy \left[y^2 - \left(\frac{\Delta_2 s}{2}\right)^2 \right] e^{-\beta y^2}$$

$$P(\Delta_2 s) = \beta^2 e^{-\frac{\beta}{4}(\Delta_2 s)^2} \int_{\frac{\Delta_2 s}{2}}^{+\infty} \mathrm{d}y \left[y^2 - \left(\frac{\Delta_2 s}{2}\right)^2 \right] e^{-\beta y^2}$$

Stochastic Adaptive 1TDVP (SA-1TDVP)

Idea:

Poisson distribution (Independent random events) $P(\Delta s_n) = \beta e^{-\beta \Delta s_n}$

Wigner surmise (Coupled random events) $P(\Delta s_n) = \beta \Delta s_n e^{-\frac{\beta}{2}(\Delta s_n)^2}$

Matrix diagonalization (large)≈Matrix diagonalization (small) + prediction of other small eigenvalues by stochastic methods

Xu, Xie, Xie, Schollwöck, Ma, JACS Au 2022, 2, 335.

Stochastic Adaptive 1TDVP (SA-1TDVP)

Two distributions for SA-1TDVP give similar performances and reduce ~80% computational time of 2TDVP.

Xu, Xie, Xie, Schollwöck, Ma, JACS Au 2022, 2, 335.

SA-1TDVP's error does not increase significantly as time evolves

Simulated spectra of pyrazine and PBI

SA-1TDVP can serve as an efficient and automatic tool for quantum dynamic and spectroscopy simulations.

Xu, Xie, Xie, Schollwöck, Ma, JACS Au 2022, 2, 335.

Application: exciton diffusion in 2D molecular crystal of PTCDI

Zhao, Ma, Javey, Wang, et al., Nat. Commun. 2019, 10, 5589.

Strong anisotropy and J-aggregation effect

Xu, Xie, Xie, Schollwöck, Ma, JACS Au 2022, 2, 335.

Summary

- BIPS provides an automatic and efficient scheme for the accurate construction of the bases for excitonic models.
- Ex-ph couplings can be quantitatively evaluated by utilizing the locality of the electronic structures.
- SA-1TDVP can capture the entanglement growth adaptively and efficiently in long-time simulations.

Acknowledgement

Group members in NJU:

Ke Wang,

, Zhaoxuan Xie, Yihe Xu,

Xu, Xiaoy

International collaborators:

Prof. Ulrich Schollwöck (LMU Munich) Prof. Alessandro Troisi (Univ. Liverpool)

Thanks for your kind attention!