Charge Transfer between Quantum Dots and Functionalizing Dyes

Svetlana Kilina

Dep. Chemistry & Biochemistry, North Dakota State University, Fargo, ND, 58108

<u>Experiment:</u> J. Phys. Chem. C, Vol. 114, No. 14, 2010 J. Appl. Phys. 110, 014314 (2011)

QD-sensitized solar cell: Efficiency is low of ~14%, due to fast internal electron-hole re-combinations => Introduce hole-accepter <u>Our DFT predictions</u>: J. Phys. Chem. C 2013, 117, 18216; J. Phys. Chem. Lett. 2014, 5, 3565; ACS Appl. Nano Mater. 2018, 7, 3174

Quantum dots for photo-catalysis

2 pathways are possible for catalysis:

- ① Electron transfer from the photoexcited dye: Ru*(II) => Ru(III)
- ② Hole transfer from photoexcited QD: Ru(II) => Ru(III)

Charge Transfer Prerequisites

For solar energy conversion the direction and speed of charge transfer are the key factors to increase the efficiency of a device.

- The alignment of electronic states of the QD with respect to the dye is a preliminary condition determining the charge transfer mechanisms.
- QD-size, dye modifications, and QD-Dye interactions may change the mutual alignment of electronic states and the QD-dye couplings.

J. Appl. Phys. 110, 014314 (2011)

Computational models

Tools:

DFT: Hybrid functionals PBE0

- Linear-response TD-DFT
- Non-adiabatic DFT-based dynamics + surface hopping

Geometry and Dynamics:

- plane wave basis set;
- GGA functionals (PBE);
- Pseudo-potentials (PAW)

Optical Spectra: GAUSSIAN (TD-DFT):

- Hybrid functionals (PBE1)
- Basis set: LANL2dz (QD)/6-31G*(ligand)

Non-Adiabatic Dynamics: Time Dependent Kohn-Sham

Kohn-Sham (KS) equations of motion:

Nuclei

$$i\hbar \frac{\partial \varphi_p(x,t)}{\partial t} = H \{\varphi(x,t)\} \varphi_p(x,t), \ p = 1, \dots, N_e$$
Wavefunction in adiabatic (KS) basis $\varphi_p(x,t) = \sum_{k}^{N_e} c_{pk}(t) |\phi_k(x;R)\rangle$
Evolution of wavefunction coefficients:
 $\dot{c}_j = \frac{dc_j}{dt} = -\sum_k c_k \left(\mathbf{d}_{jk} \cdot \dot{\mathbf{R}} + \frac{i}{\hbar} \langle \phi_j | H_q | \phi_k \rangle \right)$
KS orbitals at each moment $t, k=j$
non-adiabatic coupling:
 $\mathbf{d}_{jk} \dot{\mathbf{R}} = -i\hbar \langle \phi_j | \frac{\partial}{\partial t} | \phi_k \rangle$
 $d_{jk}(R) = \langle \phi_j(r,R) | \nabla_R | \phi_k(r,R) \rangle$
Tully's fewest switches hopping techniques
Hopping probability ~ nonadiabatic coupling
 $P_{kj}(t, dt) = 2 \operatorname{Im} \left(\frac{a_{kj}}{\hbar} \langle \phi_k | H_q | \phi_j \rangle \right) - 2 \operatorname{Re}(a_{kj} d_{kj} \cdot \dot{\mathbf{R}}),$
density matrix coefficient
S. Kiline et al, J. Phys. Chem, 111, 4871, 2007
S. Kiline and O. Prezhdo, ACS Nano, 2009

Effect of Dye Binding Geometry on DOS of QD/N719

	et	Effect of D On Charg	Oye Binding Je Transfer (Geometry Couplings	
Ψ ^e _{QD} Ψ ^h _{QD}	CB	Constrained DFT (CDFT) is used for the electronic couplings.			
	VB/	$\underline{\qquad} \Psi^{n}_{dye} \qquad Electronic coupling$		coupling	
N719 dye			(Hartree)		
			et	re	
Weak et and re		20-A	1.29×10 ⁻⁶	2.32×10 ⁻⁷	
couplings	Ι	20-B	3.60×10 ⁻⁸	1.84×10 ⁻⁸	
provide better conditions for QD*-to-dye hole transfer!		20-С	8.28×10-7	1.73×10 ⁻⁸	
	II	10-D	3.84×10 ⁻⁸	3.57×10 ⁻⁸	
		10-Е	2.29×10 ⁻⁶	4.20×10 ⁻⁹	
		1S/10-A	8.08×10 ⁻⁸	1.92×10 ⁻⁵	
Strongest electror	III	1S/10-B	3.41×10 ⁻⁴	1.32×10-2	
couplings ⇔ fast		2S/10	4.60×10-4	2.09×10 ⁻²	
QD*-to-dye e-transfer		1S/20	3.22×10-6	1.78×10 ⁻⁶	
and e-recombination IV		25	7.30×10 ⁻²	1.36×10 ⁻²	

Phonon Modes Coupled to Holes

Janus PbSe CdSe QDs: Structures						
Dr. Jabed Mohammed (former						
Grad. Stud)	g 🥥 🔮 🧶 					
(Pbc	Cd) ₃₄ Se ₆₈ (100) symmetric	Pb ₃₁ Cd ₃₇ Se ₆₈ (111) Cd-enriched	Pb ₃₇ Cd ₃₁ Se ₆₈ (111) Pb-enriched			
Dipole, D (toluene)	11.0	26.8 (19.1)	13.9 (13.1)			
Pb-Se, Ang (toluene)	2.90	2.91 (2.95)	2.96 (2.95)			
Cd-Se, Ang (toluene)	2.69	2.74 (2.76)	2.73 (2.73)			

Experiment: Nano Lett. 2017, 174, 2547-2553

Solvent effect: N719 Dye on Janus QD

Absorption Bands: N719 Dye on Janus QD

Conclusions

Janus QDs

- Binding via isothiocyanates is not stable.
 - It leads to strong electronic couplings favoring QD-to-Dye electron transfer
 - It stabilizes dye orbitals deep inside the VB unfavoring QD*-to-dye hole transfer.
 - Binding via carboxyl is stable and favors QD*-to-dye hole transfer
 - Two passways for QD*-to-dye hole transfer
 - Ultrafast (~10 fs) is facilitated by coupling with C-N stretching phonon
 - Slower component (~100 fs) originates from the QD inter-band relaxation.
 - Electronic structure of Janus QDs is adjustable by dye's linking and media/ solvent polarity:
 - Non-polar solvent results in chargetransfer (CT) optical transitions.

Acknowledgments

Los Alamos Dr. Kirill Velizhanin (Los Alamos National Lab) Dr. Sergei Tretiak (Los Alamos National Lab) Dr. Sergei Ivanov (Los Alamos National Lab) **Dr. Sean Robertson** (UT, Austin)

Computational Facilities:

- CCAST at NDSU (NSF, ND-EPSCOR)
- Center for Integrated Nanotechnologies (CINT), LANL, (DOE BES)
- NERSC (DOE BES);

DOE grant no Present, St DE-SC0021287

DOE grant no DE-SC0022239 Dr. Peng Cui (former GS, 2012–16) Jabed Muhamed (GS, NDSU; 2014–20) Benjamin Geffre (URA NDSU, 2018–20) Steven Westra (GS NDSU, 2021)

Prof. D. Kilin (NDSU) **Prof. W Sun** (NDSU)

Thanks to my group and NDSU collaborators!

