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Motivation

∙ Albeit numerically often most simple and convenient, the algorithms based on using direct-product grids scale 

exponentially with the dimensionality (the curse of dimensionality)

∙ Given a (multidimensional, localized, and normalized) distribution function P(x), the following integral can be 
computed by the Monte Carlo  method:

∫ 𝑃 𝑥 𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
σ𝑛=1
𝑁 𝑓 𝑥𝑛 with 𝑥𝑛 sampled randomly from 𝑃 𝑥𝑛

However, the error scales as ∼ 1/ 𝑁 which may seem to be too slow 
(at least comparing with quadrature methods in low dimensionality, subject to the latter being feasible)

→ Low-discrepancy Quasi-random sequences;    quasi-Monte Carlo    (the error often scales as ∼ 1/𝑁)  

∙ Generating training sets (e.g., for fitting potential energy surfaces). 
The challenge then is to sample all important regions of the configuration space in a least-redundant fashion.

∙ Constructing an efficient localized basis set (e.g., a Gaussian basis) to solve the Schrödinger equation (SE). One 
of the outstanding problems is to generate a compact grid that would approximate uniformly all the solutions of 
the SE  in a specific energy range (An optimal grid is expected to be non-uniform and non-direct-product).

Algorithms to generate efficient, i.e., both least-redundant and non-direct-product grids are desirable



Example: Sampling a general distribution P(x) using a pseudo-random sequence

Pseudo-random uniform 
Rejection: accept if
𝑃(𝑥)

𝑃𝑚𝑎𝑥
> 𝜂 with 𝜂 ∈ [0; 1]

Normal distribution
P(x) ~ exp(−𝑥2/2)



Sampling normal distribution using pseudo-random sequence and rejection method

Uniform Quasi-random
(Sobol sequence)  Normal distribution 

Uniform pseudo-random + 
rejection

Uniform quasi-random + 
rejection: the local uniformity is 

destroyed (broken teeth)

Rejection: accept if
𝑃(𝑥)

𝑃𝑚𝑎𝑥
> 𝜂 with 𝜂 ∈ [0; 1]



Uniform quasi-random (Sobol) sequence Normal  distribution 

A much better method using a uniform low-discrepancy sequence to sample a product distribution,   
P(x1, …, xd) = P1 (x1) ✕ … ✕P1 (xd).

Brown, Georgescu & VM, “Self-consistent phonons revisited. II. A general and efficient method for computing 

free energies and vibrational spectra of molecules and clusters JCP 2013”                       

∫ 𝑃 𝑥 𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
σ𝑛=1
𝑁 𝑓 𝑥𝑛 with error ∼

1

𝑁
for d ~ 103 (when none of the quadrature methods are feasible)

Using inverse 
Cumulative Distribution 
Function: all points will 
be preserved together 

with their local 
uniformity property

N=128

N=256

Sandra Brown



Can we do better?

Non-uniform quasi - regular grid?

The bad news is that a low-discrepancy sequence, as defined for the uniform
distribution, is straightforward to transform to a multidimensional distribution P(x)
only for special cases (e.g., when P(x) is a product of 1D distributions, P(x1, …, xd) =
P1 (x1) ✕ …✕P1 (xd), and the rejection method in conjunction with a low-discrepancy
sequence is not appealing.



Given a general (normalized) d-dimensional distribution function P(x),  consider points {xi} (i=1, … , N) 

and a purely repulsive homogeneous pair potential:

𝑢 𝑥𝑖 , 𝑥𝑗 = [𝜎(𝑥𝑖)/ 𝑥𝑖𝑗]
𝛾 (e.g.   𝛾 = 9 + 𝑑 )

with the position-dependent parameter      𝜎(𝑥𝑖) = c [NP(𝑥𝑖)]
−1/𝑑 and        𝑐 = 𝑐0/ ∫𝑃 𝑥 𝑑𝑥

The quasi-regular points {xi} are then obtained by minimizing the energy functional:

𝑈 𝑥1, … , 𝑥𝑁 = 

𝑖≠𝑗



𝑗

𝑢 𝑥𝑖 , 𝑥𝑗 → 𝑚𝑖𝑛

𝑈 𝑥1, … , 𝑥𝑁 = 𝑐𝛾

𝑖≠𝑗



𝑗

[P(𝑥𝑖)]
−1/𝑑/ 𝑥𝑖𝑗]

𝛾 → 𝑚𝑖𝑛

We do not need to know the constant c and hence we can use unnormalized P(x)!

Quasi-regular grid                          Shane Flynn and VM (JCP 2019, JCTC 2021).



Normal distribution (N=128)

Random Unif. quasi-random + rejection

True quasi-random Quasi-regular



Assessing the regularity and 
consistency of a grid sampled from 
a given  distribution P(r)
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The pair distances are expected to scale as ~[𝑃 𝑟 ]−1/𝑑

Scaled radial pair correlation function:

𝑔𝑠𝑐 𝑟 = 𝑔
𝑟

𝜎 𝑟
= 𝑔{𝑟[𝑃 𝑟 ]1/𝑑}

where 𝑔(𝑟) is the standard radial pair    
correlation function. 
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Calculating vibrational molecular spectra using distributed Gaussian basis.

Davis & Heller   (J. Comput. Phys. 1979 )

Hamilton & Light.  (J. Chem. Phys. 1986) 

Bacic & Light.  (J. Chem. Phys. 1986, 1987, 1988)

Garashchuk & Light   (J. Chem. Phys. 2001)

Poirier & Light.  (J. Chem. Phys. 2000)

Manzhos & Carrington   (J. Chem. Phys. 2016)



Calculating eigenenergies and eigenfunctions of a d-dimensional Hamiltonian using a distributed Gaussian 
basis in Cartesian coordinates

Hamiltonian (mass-scaled Cartesian coordinates):

(i=1, …, N)Gaussian basis:

Product of two Gaussians 

is aGaussian

The kinetic energy and overlap 

matrices are analytic:

Generalized eigenvalue problem:

Potential energy matrix elements are 
computed by sparse Gauss-Hermit 
quadratures:





Given a potential energy V(r), how to distribute Gaussians?

(i=1, …, N)

Assuming quasi-regular basis, the distances should scale as ~ [P(ri)]
-1/d 

and hence the inverse widths should scale as      𝛼𝑖 ~ [P(ri)]
2/d

Gaussian (inverse) widths 𝛼𝑖 = 𝛼0 ∗ (𝑑𝑖𝑠𝑡𝑖)
−2

𝑑𝑖𝑠𝑡𝑖 = the distance between ri and its nearest neighbor;    𝛼0~ 1 is an adjusting parameter

Gaussian centers ri (i=1,… N) are sampled from distribution P(ri)
From a semiclassical argument for d=1 we expect an optimal distribution to be 

P(ri)=[Ecut-V(ri)]
-1/2                (Ecut is an adjusting parameter)

Therefore, for a general d (Bill Pourier, 2004) we should have  P(ri)=[Ecut-V(ri)]
-𝛾 with 𝛾 =

𝑑

2

Garaschuk & Light (JCP 2001): use quasi-random + rejection method
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Sampling the 2D Morse potential
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Following Garashchuk & Light JCP 2001

Flynn & VM (JCP 2019)



2D Morse potential. 
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Garashchuk & Light JCP 2001



2D Morse potential. 
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Garashchuk & Light JCP 2001
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2D Morse potential. 
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Flynn & VM (JCP2019)
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Flynn & VM (JCP 2019)



6D Morse oscillator

Distributed Gaussian basis using N=8,000 
Recall: using semiclassical argument we expect the optimal distribution for a d-dimensional case to be 

P(ri)=[Ecut-V(ri)]
-𝛾 with 𝛾 =

𝑑

2
= 3
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Calculating vibrational energies of a K-atom molecule using a rotationally and translationally 
invariant (Gaussian?) basis: we cannot use Cartesian coordinates





Molecular spectra calculations using internal coordinates, distributed 
Gaussian basis, and the collocation method

Molecular Hamiltonian (r are internal coordinates):

The Schrödinger equation at the collocation points r(j):

Expand the wavefunction in a Gaussian basis using internal coordinates:

Kinetic energy can be expressed in Cartesian 
Coordinates and evaluated numerically by finite difference

We need to solve the generalized 
eigenvalue problem



Manzhos & Carrington (JCP 2016):  Using quasi-random+rejection Gaussian bases with N = 25 000,  39 000, 40 000



Flynn & Mandelshtam (JCTC 2021):  using quasi-
regular Gaussian basis with N = 10 000 for the lowest 
50 eigenenergies
(The improvement is about factor of 3 compared to 
the results of Manzhos & Carrington)



Thank you

Shane Flynn Sandra Brown


