

mpipks

Max-Planck-Institut für Physik komplexer Systeme

Wavepacket dynamics at conical intersection and its spectroscopic manifestation

Lipeng Chen

Max Planck Institute for the Physics of Complex Systems, Germany

Dec 9, 2021, VISTA Seminar

Conical intersections

- Dynamics at conical intersections in dissipative environment
- Spectroscopic characterization of conical intersections: Recent suggestions

24-mode conical intersection model of pyrazine

 Multimode quantum dynamics with a multiple Davydov D2 trial states: Application to a 24-dimensional conical intersection model

Model Hamiltonian

 $H = H_S + H_B + H_{SB}.$

$$\begin{split} H_{S} &= \sum_{l=10a,6a,1,9a} \frac{\omega_{l}}{2} \left(-\frac{\partial^{2}}{\partial Q_{l}^{2}} + Q_{l}^{2} \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -\Delta & 0 \\ 0 & \Delta \end{pmatrix} + \begin{pmatrix} 0 & \lambda \\ \lambda & 0 \end{pmatrix} Q_{10a} + \sum_{m=6a,1,9a} \begin{pmatrix} \kappa_{m}^{(1)} & 0 \\ 0 & \kappa_{m}^{(2)} \end{pmatrix} Q_{m} \\ \\ H_{B} &= \sum_{n=1}^{N_{\text{bath}}} \frac{\omega_{n}}{2} \left(-\frac{\partial^{2}}{\partial Q_{n}^{2}} + Q_{n}^{2} \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad H_{SB} = \sum_{n=1}^{N_{\text{bath}}} \begin{pmatrix} \kappa_{n}^{(1)} & 0 \\ 0 & \kappa_{n}^{(2)} \end{pmatrix} Q_{n} \end{split}$$

5

Multiple Davydov ansatz

Multiple Davydov D2 ansatz

$$|\mathbf{D}_{2}^{\mathbf{M}}(t)\rangle = |S_{1}\rangle \sum_{u=1}^{\mathbf{M}} A_{u}(t) \exp\left(\sum_{l} f_{ul}(t)b_{l}^{\dagger} - \mathbf{H.c.}\right) |\mathbf{0}\rangle_{v} + |S_{2}\rangle \sum_{u=1}^{\mathbf{M}} B_{u}(t) \exp\left(\sum_{l} f_{ul}(t)b_{l}^{\dagger} - \mathbf{H.c.}\right) |\mathbf{0}\rangle_{v}$$

Dirac-Frenkel time-dependent variational method

$$L = \langle \Phi(t) | \frac{i\hbar}{2} \frac{\overleftrightarrow{\partial}}{\partial t} - \hat{H} | \Phi(t) \rangle$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\alpha_m^*}}\right) - \frac{\partial L}{\partial \alpha_m^*} = 0$$

Observables

diabatic state population $P_k^{di}(t) = \langle D_2^M(t) | (|S_k\rangle \langle S_k|) | D_2^M(t) \rangle.$

adiabatic state population
$$| ilde{\mathbf{S}}_k
angle = \sum_{k'=1,2} \mathbf{M}(Q_{10a}, \mathbf{Q}_t)_{kk'} |\mathbf{S}_{k'}
angle, \qquad k=1,2$$

$$\begin{split} \hat{P}_{1}^{\text{ad}} &= \mathbf{M}^{\dagger} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{M} \\ &= \frac{1}{2} - \frac{1}{2(\Omega^{2} + \lambda^{2}Q_{10a}^{2})^{1/2}} \begin{pmatrix} -\Omega & \lambda Q_{10a} \\ \lambda Q_{10a} & \Omega \end{pmatrix} \\ \end{split}$$

$$\hat{P}_{1}^{\text{ad}} &= \frac{1}{2} - \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(\Omega^{2} + \lambda^{2}Q_{10a}^{2})x^{2}} dx \begin{pmatrix} -\Omega & \lambda Q_{10a} \\ \lambda Q_{10a} & \Omega \end{pmatrix}$$

 $\hat{P}_2^{ad} = 1 - \hat{P}_1^{ad} \qquad P_k^{ad} = \langle D_2^M(t) | \hat{P}_k^{ad} | D_2^M(t) \rangle$

Observables

adiabatic wave packets

$$P_k^{
m ad}(Q_i,t) = \int dQ_1 \cdots \int dQ_{i-1} \int dQ_{i+1} \cdots \int dQ_{
m N_l} \langle Q_1 | \cdots \langle Q_{
m N_l} | \langle ilde{S}_k | {
m D}_2^{
m M}(t)
angle \langle {
m D}_2^{
m M}(t) | ilde{S}_k
angle | Q_1
angle \cdots | Q_{
m N_l}
angle$$

Diabatic and adiabatic population

Diabatic population

Adiabatic population

4mode

4+20 mode

4mode

4+20 mode

J. Chem. Phys, 150, 024101, 2019

How to detect & characterize dynamics at conical intersections via Multidimensional spectroscopy

Time & frequency resolved fluorescence

• Take a minimal two-electronic-states two-vibrational-modes model of conical intersection ($S_1(n\pi^*)-S_2(\pi^*\pi^*)$ conical intersection in pyrazine)

Hierarchy Equation of Motion (HEOM)

$$H^{(S)} = \sum_{k=0,1,2} |k\rangle (h_k + \epsilon_k) \langle k| + (|1\rangle \langle 2| + |2\rangle \langle 1|) \lambda Q_c$$
$$h_k = \frac{1}{2} \sum_{j=c,t} \hbar \Omega_j \{P_j^2 + Q_j^2\} + \kappa_k Q_t$$

$$H^{(B)} = \{|0\rangle\langle 0| + |1\rangle\langle 1| + |2\rangle\langle 2|\} \sum_{j=c,t} \sum_{\alpha} \frac{1}{2} \hbar \omega_{\alpha,j} \{p_{\alpha,j}^{2} + q_{\alpha,j}^{2}\}$$

$$H^{(\text{SB})} = \{|1\rangle\langle 1| + |2\rangle\langle 2|\} \sum_{j=c,t} \sum_{\alpha} \{c_{\alpha,j}q_{\alpha,j}Q_j\}$$

 $J_{j}(\omega) = \sum_{\alpha} c_{\alpha,j}^{2} \delta(\omega - \omega_{\alpha,j}) (j = c, t)$ $J_{j}(\omega) = 2\lambda_{j} \gamma_{j} \omega / (\omega^{2} + \gamma_{j}^{2}), \qquad j = c, t$

ARRAYFIRE A Tensor Library for GPUs

$$\partial_t \boldsymbol{\rho}(t) = -\frac{\mathrm{i}}{\hbar} [H^{(\mathrm{S})}, \boldsymbol{\rho}(t)] - \mathcal{R}\boldsymbol{\rho}(t)$$

HEOM (Tanimura, Kubo)

$$\begin{split} \frac{\partial}{\partial t} \rho_{l_c,l_t}(t) &= -(i\mathscr{L}^{(s)} + l_c\gamma_c + l_t\gamma_t)\rho_{l_c,l_t}(t) \\ &+ \Phi_c\rho_{l_c+1,l_t}(t) + \Phi_t\rho_{l_c,l_t+1}(t) \\ &+ l_c\gamma_c\Theta_c\rho_{l_c-1,l_t}(t) \\ &+ l_t\gamma_t\Theta_t\rho_{l_c,l_t-1}(t) \\ \Phi_j &= iV_j^{\times} \\ \mathbf{s} & \Theta_j &= i(\frac{2\lambda_j}{\beta\hbar^2}V_j^{\times} - i\frac{\lambda_j}{\hbar}\gamma_jV_j^{\circ}) \end{split}$$

Equation of Motion Phase matching approach (EOM-PMA)

System-field interaction Hamiltonian

$$H_{\alpha}(t) = -\eta_{\alpha} E_{\alpha}(t - t_{\alpha}) \{ e^{i\omega_{\alpha}t} X + e^{-i\omega_{\alpha}t} X^{\dagger} \}$$

 $X = |0\rangle\langle 2| \qquad X^{\dagger} = |2\rangle\langle 0|$

Equation of motion phase-matching approach (EOM-PMA) [Maxim Gelin and Wolfgang Domcke]

Efficient Calculation of Time- and Frequency-Resolved Four-Wave-Mixing Signals MAXIM F. GELIN. DASSIA EGOROVA. AND

MAXIM F. GELIN, DASSIA EGOROVA, AND WOLFGANG DOMCKE* Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany RECEIVED ON FEBRUARY 9, 2009

Ideal spontaneous emission spectrum

 $S(t, \omega_f) = \text{Im}\{A(t, \omega_f)\}$ $A(t, \omega_{\rm f}) = {\rm Tr}\{{\rm e}^{-{\rm i}\omega_{\rm f}t}X^{\dagger}[\bar{\rho}_{00}(t) - \rho_{00}(t)]\} + O(\eta_{\rm f}^{3})$ $\partial_t \boldsymbol{\rho}(t) = -\frac{\mathrm{i}}{\hbar} [H^{(\mathrm{S})} - (H_{\mathrm{p}}(t)), \boldsymbol{\rho}(t)] - (\mathcal{R} + \mathcal{D})\boldsymbol{\rho}(t)$ $\partial_{t}\overline{\rho}(t) = -\frac{\mathrm{i}}{\hbar} [H^{(\mathrm{S})} - H_{\mathrm{p}}(t)] \overline{\rho}(t)] + (\frac{\mathrm{i}}{\hbar} \mathrm{e}^{\mathrm{i}\omega_{\mathrm{f}}t} X \overline{\rho}(t)]$ $-(\mathcal{R}+\mathcal{D})\overline{\rho}(t)$ gate pulse pump pulse fluorescence

Measurable time- and frequency-gated (TFG) SE spectrum

$$S_{\rm TFG}(t, \omega_{\rm f}) \sim {
m Im} \int_{-\infty}^{\infty} {
m d}\omega' \int_{-\infty}^{\infty} {
m d}t' \, \Phi(t - t', \omega_{\rm f} - \omega') A(t', \omega')$$

Time- and Frequency-Resolved Fluorescence Spectra $\gamma_i^{-1} = 50$ fs $J_j(\omega) = 2\lambda_j \gamma_j \omega / (\omega^2 + \gamma_j^2), \qquad j = c, t$ (a) $-x 10^4$ (b) <u>6 x 10</u> (c) time delay 0 0 cm⁻¹ E 2 200 200 excitation emission[#]2 004 (t) (sj) 400 600 600 -5 o⁰ 5 Q_0 -5 5 800 800 4.5 4 3.5 emission frequency (eV) 3 4.5 4 3.5 emission frequency (eV) 3.5 3 5 Zero system-bath coupling $\ \lambda_i=0$ 0.3 0.3 Weak system-bath coupling 0.2 0.2 (d) 0. 1000 800 800 $\lambda_j = 10 \text{ cm}^{-1}$ 0 600 600 400 0 -2 -4 -6 0 -2 -4 -6 0 200 200 200 (sj 400 0.2 0.2 600 0.1 0.1 1000 800 600 400 6 4 2 0 -2 -4 -6 800 2 0 -2 -4 -6 0 200 200 5 4.5 4 3.5 emission frequency (eV) $\lambda_i = 60 \text{ cm}^{-1}$ J. Phys. Chem. Lett, 10, 5873-5880, 2019 intermediate system-bath coupling

Electronic 2D spectroscopy

Double-Sided Feynman Diagrams

Double-Sided Feynman Diagrams

21

Simulation of four-wave-mixing signals with multiconfigurational Ehrenfest dynamics

$$H = \sum_{k=\mathrm{S}_1,\mathrm{S}_2} \epsilon_k |k\rangle \langle k| + \sum_q \omega_q b_q^{\dagger} b_q + \frac{1}{\sqrt{2}} \sum_{k\neq k'}^{\mathrm{S}_1,\mathrm{S}_2} \lambda |k\rangle \langle k'| \left(b_{10a}^{\dagger} + b_{10a} \right) + \frac{1}{\sqrt{2}} \sum_{k=\mathrm{S}_1,\mathrm{S}_2} \sum_{q\neq 10a} \kappa_q^k |k\rangle \langle k| \left(b_q^{\dagger} + b_q \right)$$

System-field interaction Hamiltonian

$$H_L = -\sum_{\alpha=1}^3 \left(\mathbf{E}_{\alpha}(\mathbf{r}, t) \cdot \boldsymbol{\mu}_+ + \mathbf{E}_{\alpha}^*(\mathbf{r}, t) \cdot \boldsymbol{\mu}_- \right)$$

$$\mathbf{E}_{\alpha}(\mathbf{r},t) = \mathbf{e}_{\alpha} E_{\alpha}(t-\tau_{\alpha}) e^{i\mathbf{k}_{\alpha}\cdot\mathbf{r}-i\omega_{\alpha}t}$$

$$\tau_1 = -T_w - \tau, \quad \tau_2 = -T_w, \quad \tau_3 = 0$$

Four time correlation functions

$$R_1(t_3, t_2, t_1) = \Phi(t_1, t_1 + t_2, t_1 + t_2 + t_3, 0),$$

$$R_2(t_3, t_2, t_1) = \Phi(0, t_1 + t_2, t_1 + t_2 + t_3, t_1),$$

$$R_3(t_3, t_2, t_1) = \Phi(0, t_1, t_1 + t_2 + t_3, t_1 + t_2),$$

$$R_4(t_3, t_2, t_1) = \Phi(t_1 + t_2 + t_3, t_1 + t_2, t_1, 0)$$

$$\Phi(\tau_{4},\tau_{3},\tau_{2},\tau_{1}) = \langle \Phi_{0} | \mu_{-}e^{-\frac{i}{\hbar}H(\tau_{4}-\tau_{3})} \mu_{+}e^{-\frac{i}{\hbar}H_{\mathrm{ph}}(\tau_{3}-\tau_{2})} \mu_{-}e^{-\frac{i}{\hbar}H(\tau_{2}-\tau_{1})} \mu_{+} | \Psi_{0} \rangle$$

$$\mathbb{W}(t) = \sum_{u=1}^{M} \left(\sum_{k=1}^{S_{1},S_{2}} A_{uk}(t) | k \right) | \mathbf{z}_{u}(t) \rangle$$

$$\mathbb{W}(t) = \sum_{u=1}^{M} \left(\sum_{k=1}^{S_{1},S_{2}} A_{uk}(t) | k \right) | \mathbf{z}_{u}(t) \rangle$$

$$= \sum_{u=1}^{M} \left(\sum_{k=1}^{S_{1},S_{2}} A_{uk}(t) | k \right) \exp \left[\sum_{q} \left(z_{uq} b_{q}^{\dagger} - z_{uq}^{*} b_{q} \right) \right] | 0 \rangle_{\mathrm{ph}}$$

Simulation of 4WM signals with MCE

Stimulated emisssion (SE)

ground state bleach (GSB)

$$S_{\rm SE}(\omega_{\tau}, T_w, \omega_t) = \operatorname{Re} \int_0^{\infty} \int_0^{\infty} d\tau dt [R_1(\tau, T_w, t)e^{i\omega_{\tau}t + i\omega_t t} + R_2(\tau, T_w, t)e^{-i\omega_{\tau}\tau + i\omega_t t}]$$
$$S_{\rm GSB}(\omega_{\tau}, T_w, \omega_t) = \operatorname{Re} \int_0^{\infty} \int_0^{\infty} d\tau dt [R_4(\tau, T_w, t)e^{i\omega_{\tau}t + i\omega_t t} + R_3(\tau, T_w, t)e^{-i\omega_{\tau}\tau + i\omega_t t}]$$

2D spectra
$$S_{tot}(\omega_{\tau}, T_w, \omega_t) = S_{GSB}(\omega_{\tau}, T_w, \omega_t) + S_{SE}(\omega_{\tau}, T_w, \omega_t)$$

Transient absorption (TA) spectroscopy

$$P_{\text{TA}}(\mathbf{T}_{w},t) \sim -i \left[R_{1}(0,\mathbf{T}_{w},t) + R_{2}(0,\mathbf{T}_{w},t) + R_{3}(0,\mathbf{T}_{w},t) + R_{4}(0,\mathbf{T}_{w},t) \right]$$
$$S_{\text{TA}}(\mathbf{T}_{w},\omega_{t}) = \text{Re} \int_{0}^{\infty} dt i P_{\text{TA}}(\mathbf{T}_{w},t) e^{i\omega_{t}t}$$

Time-resolved fluorescence spectroscopy

$$S_{\text{TFG}}(T_{\text{w}},\omega_t) \sim \text{Re} \int_0^\infty dt_2 dt R_2(0,t_2,t) e^{i\omega_t t} E_f(t+t_2-T_{\text{w}}) E_f(t_2-T_{\text{w}})$$

$$E_f(t) = \exp\{-(t/\tau_f)^2\}$$

TFG fluorescence spectra

 $S_{\mathrm{TFG}}(\mathrm{T}_{\mathrm{w}},\omega_t)$

J. Chem. Phys, 154, 054105, 2021

Transient absorption signal $S_{TA}(T_w, \omega_t)$

2D electronic spectra $S(\omega_{\tau}, T_{w}, \omega_{t})$

J. Chem. Phys, 154, 054105, 2021

Efficient simulation of time and frequency resolved four wave mixing signals at finite temperature: The thermo-field dynamics approach

Zero temperature four-time correlation function

$$\Phi^{e}(\tau_{4},\tau_{3},\tau_{2},\tau_{1}) = \langle \Phi_{0} | \boldsymbol{\mu}_{-}e^{-iH_{e}(\tau_{4}-\tau_{3})} \boldsymbol{\mu}_{+}e^{-ih_{g}(\tau_{3}-\tau_{2})} \boldsymbol{\mu}_{-}e^{-iH_{e}(\tau_{2}-\tau_{1})} \boldsymbol{\mu}_{+} | \Psi_{0} \rangle , | \Psi_{0} \rangle = |g\rangle |0\rangle_{g}$$

Finite temperature four-time correlation function

$$\Phi^{e}(\tau_{4},\tau_{3},\tau_{2},\tau_{1}) = \operatorname{Tr}\left(\varphi_{g}\langle g\rangle e^{ih_{g}\tau_{4}}\boldsymbol{\mu}_{-}e^{-iH_{e}(\tau_{4}-\tau_{3})}\boldsymbol{\mu}_{+}e^{-ih_{g}(\tau_{3}-\tau_{2})}\boldsymbol{\mu}_{-}e^{-iH_{e}(\tau_{2}-\tau_{1})}\boldsymbol{\mu}_{+}e^{-ih_{g}\tau_{1}}|g\rangle\right)$$

$$\rho_{g} = Z_{g}^{-1}\exp\left\{-\beta h_{g}\right\}$$
Thermo-field dynamics (TFD)
$$|\mathbf{0}(\beta)\rangle = Z_{g}^{-1/2}\sum_{l}e^{-\beta\hbar\omega_{l}/2}|l,\tilde{l}\rangle$$

$$|Q\rangle = \operatorname{Tr}\left\{\rho_{g}Q\right\} = \langle \mathbf{0}(\beta)|Q|\mathbf{0}(\beta)\rangle$$

$$= Z_{g}^{-1/2}e^{-\frac{1}{2}\beta h_{g}}|\mathbf{I}\rangle; \quad |\mathbf{I}\rangle = \sum_{l}|l,\tilde{l}\rangle$$

$$h_{g} = \sum_{l}\omega_{l}b_{l}^{\dagger}b_{l}, \quad \tilde{h}_{g} = \sum_{l}\omega_{l}\tilde{b}_{l}^{\dagger}\tilde{b}_{l} \quad |\mathbf{0}(\beta)\rangle = e^{-i\hat{G}}|\mathbf{0}\rangle_{g} \quad \hat{G} = \hat{G}^{\dagger} = -i\sum_{l}\theta_{l}(\hat{b}_{l}\hat{b}_{l} - \hat{b}_{l}^{\dagger}\hat{b}_{l}^{\dagger})$$

Efficient simulation of time and frequency resolved four wave mixing signals at finite temperature: The thermo-field dynamics approach

Thermo-field dynamics (TFD)

$$\Phi^{e}(\tau_{4},\tau_{3},\tau_{2},\tau_{1}) = \langle g | \langle \mathbf{0} | \boldsymbol{\mu}_{-}e^{-i\bar{H}_{e\theta}(\tau_{4}-\tau_{3})} \boldsymbol{\mu}_{+}e^{-i\bar{h}_{g\theta}(\tau_{3}-\tau_{2})} \boldsymbol{\mu}_{-}e^{-i\bar{H}_{e\theta}(\tau_{2}-\tau_{1})} \boldsymbol{\mu}_{+} | \mathbf{0} \rangle | g \rangle$$

$$\bar{h}_{g\theta} = e^{iG} \left(h_{g} - \tilde{h}_{g}\right) e^{-iG} \qquad e^{iG}b_{l}e^{-iG} = b_{l}\cosh(\theta_{l}) + \tilde{b}_{l}^{\dagger}\sinh(\theta_{l}),$$

$$e^{iG}b_{l}e^{-iG} = \tilde{b}_{l}\cosh(\theta_{l}) + b_{l}^{\dagger}\sinh(\theta_{l}),$$

$$e^{iG}\left(b_{l}^{\dagger}b_{l} - \tilde{b}_{l}^{\dagger}\tilde{b}_{l}\right) e^{-iG} = b_{l}^{\dagger}b_{l} - \tilde{b}_{l}^{\dagger}\tilde{b}_{l}.$$

Zero temperature four time correlation function

$$\Phi^{e}(\tau_{4},\tau_{3},\tau_{2},\tau_{1}) = \langle \Phi_{0} | \boldsymbol{\mu}_{-}e^{-iH_{e}(\tau_{4}-\tau_{3})} \boldsymbol{\mu}_{+}e^{-ih_{g}(\tau_{3}-\tau_{2})} \boldsymbol{\mu}_{-}e^{-iH_{e}(\tau_{2}-\tau_{1})} \boldsymbol{\mu}_{+} | \Psi_{0} \rangle$$
, $|\Psi_{0}\rangle = |g\rangle|0\rangle_{g}$

Model Hamiltonian of CI mediated singlet fission in rubrene

Two states singlet fission model

Singlet state S_1

Triplet pair state TT

 $\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{SB}$

$$\hat{H}_{S} = |g\rangle \hat{h}_{g} \langle g| + \sum_{e=S_{1},TT} |e\rangle (\epsilon_{e} + \hat{h}_{e}) \langle e| + (|S_{1}\rangle \langle TT| + |TT\rangle \langle S_{1}|) \lambda \hat{Q}_{c}$$
$$\hat{h}_{e} = \hat{h}_{g} + \sum \kappa_{m}^{(e)} \hat{Q}_{m}$$

$$\hat{h}_g = \frac{1}{2} \sum_{j=c,t}^{m=t} \hbar \Omega_j \left\{ \hat{P}_j^2 + \hat{Q}_j^2 \right\}$$

$$\hat{H}_B = \sum_n \frac{1}{2} \hbar \omega_n \left\{ \hat{p}_n^2 + \hat{q}_n^2 \right\}$$

$$\hat{H}_{SB} = \sum_{e=S_1, TT} |e\rangle (\sum_n \kappa_n^{(e)} \hat{q}_n) \langle e|$$

$$J(\omega) = \sum_{n} \kappa_n^2 \delta(\omega - \omega_n) = 2\eta \frac{\omega_c \omega}{\omega^2 + \omega_c^2}$$

	S_1	TT	Ω	$\tau = 2\pi/\Omega$
ϵ_e	2.58	2.5812		
κ_{t_1}	0.3720	-0.3720	0.1860	22.2
κ_{t_2}	0.0745	-0.0745	0.0260	159.1
κ_c	0	0	0.0154	268.6
		$\lambda = 0.05$		

TFG fluorescence spectra

Upper panels: good time resolution

Lower panels: good frequency resolution

 $\tau_f = 12 \text{ fs}$

 $\tau_f = 60 \text{ fs}$

Transient absorption spectra

2D electronic spectra at T=0K

2D electronic spectra at T=100K

2D electronic spectra at T=200K

2D electronic spectra at T=300K

3.5

2.5

1.5

0.5

3

T_=100 fs

0.5 1 1.5 2

ω

3.5

2.5

1.5

0.5

3 2

2

 ω_{τ}

2.5 3 3.5

100

80

60

40

J. Chem. Theory. Comput, 17, 4359-4373 (2021)

T=300K

50

40

30

20

On the fly Ab initio surface hopping simulations of four-wave-mixing signals of Nonadiabatic Excited-State Dynamics Using the Doorway-Window representation

On-the-fly Ab initio direct dynamics:

- 1. Only local information of adiabatic PES needed, computed "on-the-fly" with ab initio electronic structure theory, avoid the tedious construction of global PES.
- 2. Cost of classical trajectory scales linearly with DOFs, avoids the curse of dimensionality

Nonadiabatic transition between adiabatic PES \rightarrow surface hopping

Doorway-window representation of the signals

Time evolution of doorway wave packet is projected into the window wave packet.

Hamiltonian

$$H = \begin{pmatrix} H_0 & 0 & 0 \\ 0 & H_1 & 0 \\ 0 & 0 & H_2 \end{pmatrix} \xrightarrow{\checkmark} E_j \sim \omega_{pu}, \, \omega_{pr}$$
$$E_j \sim 2\omega_{pu}, \, 2\omega_{pr}$$
$$\mu^{\uparrow} = \begin{pmatrix} 0 & \mu_{01} & 0 \\ 0 & 0 & \mu_{12} \\ 0 & 0 & 0 \end{pmatrix}, \ \mu^{\downarrow} = \begin{pmatrix} 0 & 0 & 0 \\ \mu_{10} & 0 & 0 \\ 0 & \mu_{21} & 0 \end{pmatrix}$$

$$\frac{d}{dt}\rho(t) = -i[H - \mu^{\uparrow}\mathcal{E}(t) - \mu^{\downarrow}\mathcal{E}^{*}(t), \rho(t)]. \qquad \rho(t = -t_{0}) = \begin{pmatrix} \rho_{B} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Nonlinear response functions

$$\mathcal{P}(t) \sim -i \int_0^\infty dt_3 \int_0^\infty dt_2 \int_0^\infty dt_1 \mathcal{E}_{pu}(t+T-t_3-t_2-t_1) \mathcal{E}_{pu}(t+T-t_3-t_2) \mathcal{E}_{pr}(t-t_3) \times \left\{ e^{-i\omega_{pu}t_1} e^{i\omega_{pr}(t_3-t)} R_R(t_3,t_2,t_1) + e^{i\omega_{pu}t_1} e^{i\omega_{pr}(t_3-t)} R_{NR}(t_3,t_2,t_1) \right\}.$$
$$R_R(t_3,t_2,t_1) = R_{\mathrm{II}}(t_3,t_2,t_1) + R_{\mathrm{III}}(t_3,t_2,t_1) - R_{\mathrm{VI}}(t_3,t_2,t_1),$$

 $R_{NR}(t_3, t_2, t_1) = R_{I}(t_3, t_2, t_1) + R_{IV}(t_3, t_2, t_1) - R_{V}(t_3, t_2, t_1).$

Pump-probe signals

$$S_{\rm int}(T, \omega_{\rm pr}) \sim \int dt \mathcal{P}(T, t) \mathcal{E}_{\rm pr}(t) e^{i\omega_{\rm pr}t}$$

Time delay between the pump and probe pulses
envelope of the probe pulse

J. Chem. Theory. Comput, 17, 2394-2408 (2021)

Doorway-window representation of the pump-probe specra

evolutions over trajectories in the electronic ground state and lower-lying excited electronic states J. Chem. Theory. Comput, **17**, 2394-2408 (2021)

Transient absorption pump probe spectra for pyrazine

low-lying excited states

The next 30 electronic states with vertical excitation energies up to 10eV

High-lying excited states

J. Chem. Theory. Comput, 17, 2394-2408 (2021)

Outlook

• Use **cavity** to control the photochemistry and characterize its dynamics by multidimensional spectroscopy

• Simulate **time-resolved X-ray (electron) diffraction** of CI systems (the structural change associated with the electronic transitions)

Acknowledgements

Prof. Wolfgang Domcke, TUM

Prof. Maxim Gelin (HDU)

Prof. Zhao Yang, NTU

Prof. Vladimir Chernyak, WSU

Prof. Dmitry Shalashilin, U of Leeds

Prof. Raffaele Borrelli, U of Torino

Financial support

MPI-PKS visitors program

44