

Virtual International Seminar on Theoretical Advancements (VISTA)

Time-Dependent Density Matrix Renormalization Group for Electron-Vibration Coupled Problems

Jiajun Ren Department of Chemistry, Tsinghua University 10/14/2021

Electron-vibration coupled problems

Decoherence and dissipation of electronic states

Luscombe, C. K. et al. Adv. Mater. 2021, 33, 1904239.

Fleming, G. R. et al. Annu. Rev. Phys. Chem. 2009, 60, 241.

Electron-vibration coupling is key to light-emitting, charge/energy transfer/transport in organic optoelectronic materials and biological systems

Theoretical challenges

 approximate method is not universally applicable
 quantum exponential wall for many-body wavefunction theory

10 basis for 1 DoF

scaling

 $\sim O(10^{N})$

Density matrix renormalization group

The idea of RG:

effective DoFs (states) with effective interaction

Images from Steinwachs, C. F. Springer International Publishing 2014.

DMRG: truncation scheme based on reduced density matrix

$$\begin{array}{c} \mathsf{A} \boxed{\mathsf{OO} \cdots \mathsf{O}} \\ \mathsf{OO} \cdots \mathbf{O} \\ \mathsf{P}_A = \mathrm{Tr}_B(\rho) = \mathrm{Tr}_B(|\Psi\rangle \langle \Psi|) = \sum_{i}^{\min(a,b)} w_i |i\rangle_A \langle i|_A \quad \mathbf{E} \\ \sum_{i} w_i = 1 \\ & \mathbf{T}_i \\ \end{array}$$

White, S. R. Phys. Rev. Lett. 1992, 69, 2863.

A subspace + B subspace

- $|i\rangle$: renormalized states
- w_i: weight of renormalized state
- Entanglement: von Neumann entropy

$$S = \sum -w_i \log w_i$$

 The first M renormalized states form the best approximation in the 2-norm

Matrix product state (MPS)

$$\Psi \rangle = \sum_{\{\sigma\}} C_{\sigma_1 \sigma_2 \cdots \sigma_N} |\sigma_1 \sigma_2 \cdots \sigma_N \rangle$$
$$= \sum_{\{a\}, \{\sigma\}} A_{a_1}^{\sigma_1} A_{a_1 a_2}^{\sigma_2} \cdots A_{a_{N-1}}^{\sigma_N} |\sigma_1 \sigma_2 \cdots \sigma_N \rangle$$

The size of a (bond dimension *M_S*) controls the accuracy

Locality in physics

Locality in math

The complexity of algorithm is polynomial

Schollwöck, U. Ann. Phys. 2011, 326, 96–192. Ostlund, S.; Rommer, S. Phys. Rev. Lett. 1995, 75, 3537.

Matrix product operator (MPO)

Crosswhite, G. M.; Bacon, D. Phys. Rev. A 2008, 78, 012356.

MPO takes advantage of the sparsity in operator, and the bond dimension M_0 is much smaller than the number of operator terms.

$$\mathbf{e.g.} \qquad \hat{H}_{\text{Holstein}} = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{j} + \sum_{i \neq j} J_{ij} a_{i}^{\dagger} a_{j} + \sum_{in} \frac{1}{2} (p_{in}^{2} + \omega_{in}^{2} x_{in}^{2}) + \sum_{in} c_{in} a_{i}^{\dagger} a_{i} x_{in}$$

The number of terms is $O(N_{mol} N_{vib})$, the full matrix representation is of size $O(2^{N_{mol}} d^{N_{mol}N_{vib}})$.

If written in MPO, $M_0 = 5$ for 1D nearest neighbor hopping, otherwise $O(N_{mol})$.

TD-DMRG

Propagation and Compression (P&C)

adaptively optimize bond dimension

Garcia-Ripoll, J. J. New J. Phys. 2006, 8, 305.

Time-dependent variational principle

$$\langle \delta \Psi | i \frac{\partial}{\partial t} - \hat{H} | \Psi \rangle = 0$$
 $\qquad \frac{\partial |\Psi \rangle}{\partial t} = -i \hat{P} \hat{H} |\Psi \rangle$

$$\hat{P} = \sum_{i=1}^{N} \hat{P}[1:i-1] \otimes \hat{I}_{i} \otimes \hat{P}[i+1:N] - \sum_{i=1}^{N-1} \hat{P}[1:i] \otimes \hat{P}[i+1:N]$$

- energy conservation
- wavefunction norm conservation
- no large tensor decomposition

Haegeman, J.; Lubich, C.; Oseledets, I.; Vandereycken, B.; Verstraete, F. *Phys. Rev. B.* 2016, 94, 165116.

Temperature effect and density matrix evolution

Purify any density matrix to a wavefunction in an enlarged space $\,P\otimes Q, Q\equiv P\,$

$$ho = \sum_l w_l |l\rangle_P \langle l|_P = \text{Tr}_Q |\Psi\rangle \langle \Psi|, |\Psi\rangle = \sum_l \sqrt{w_l} |l\rangle_P |l\rangle_Q$$
 thermo field dynamics Thermal equilibrium density matrix at β

$$\begin{split} \rho_{\beta} &= \frac{e^{-\beta H_{P}}}{Z_{\beta}} & |\Psi(\beta/2)\rangle = \sum_{k} \frac{e^{-\beta/2\hat{H}_{P}}}{\sqrt{Z_{\beta}}} |k\rangle_{P}|k\rangle_{Q} & \langle \Psi(\beta/2)|\Psi(\beta/2)\rangle = 1 \\ \beta &= 0 & |\Psi(0)\rangle = \prod_{i} \sum_{\sigma_{i}} \frac{1}{\sqrt{d_{i}}} |\sigma_{i}\rangle_{P} |\sigma_{i}\rangle_{Q} & \text{maximally entangled state, M_{o}=1} \end{split}$$

imaginary time SE:

$$-rac{\partial}{\partial au}\Psi(au)=\hat{H}_P\Psi(au)$$
 $au=0 oeta/2$ normalization after each time-step

Takahasi, Y.; Umezawa, H. Collective Phenomena; Gordon and Breach, Science Publishers: London, 1975; Vol. 2, pp 55–80.
Feiguin, A. E.; White, S. R. *Phys. Rev. B* 2005, 72, 220401.
Verstraete, F.; Garcia-Ripoll, J. J.; Cirac, J. I. *Phys. Rev. Lett.* 2004, 93, 207204.
Zwolak, M.; Vidal, G. *Phys. Rev. Lett.* 2004, 93, 207205.

Spin-boson model with sub-Ohmic spectral density

Energy transfer in 7-site Fenna–Matthews–Olson complex

HEOM-HT: Yan, Y.; Xu, M.; Li, T.; Shi, Q. J. Chem. Phys. 2021, 154, 194104. Li, W.; Ren, J.*; Shuai, Z. J. Chem. Phys. 2020, 152, 024127. (JCP Editors' Choice 2019)

Emission of DSB crystal

	N molecules	N modes	N phonons	dimension of Hilbert space
TD-DMRG	18	14	10	18×10^{252}
1-particle	18	5	4	18432
2-particle	18	2	4	73728

$$\sigma(\omega) \propto -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\infty} C(t) e^{i\omega t} dt$$

 $C(t) = -i\theta(t) \langle [\hat{\mu}(t), \hat{\mu}] \rangle_{\rm gs,ex}$

Exp: 1.4 K Wu, C.; Delong, M.; Vardeny, Z.; Ferraris, J. Synth. Met. 2003, 137, 939. Ren, J.; Shuai, Z.; Kin-Lic Chan, G. J. Chem. Theory Comput. 2018, 14, 5027.

truncated Hilbert space

Spano, F. C. Acc. Chem. Res. 2010, 43, 429.

Anharmonic effect in molecular photophysics

 $H_{i/f} = T + V_{i/f}(q)$ $q_{i,m} = \sum_{l} J_{ml} q_{f,l} + \Delta q_{i,m}$ displacement, torsion, rotation

 $\Psi_{i,\ell}(\boldsymbol{r},\boldsymbol{a}) = \phi_{i,\ell}(\boldsymbol{r};\boldsymbol{a}) X_{i,\ell}(\boldsymbol{a})$

weak nonadiabatic coupling regime (FGR is valid):

$$k_{\rm ic} = \int_{-\infty}^{\infty} e^{i\Delta E_{\rm ad}t} C(t) dt \qquad \hat{H}_1 = -\sum_l F_{\rm fi}^l(q) |\phi_{\rm f}\rangle \langle\phi_{\rm i}| \frac{\partial}{\partial q_l} + {\rm h.c.}$$

$$C(t) = \langle \hat{H}_1(t)\hat{H}_1\rangle_T = {\rm Tr}(\frac{e^{-\beta\hat{H}_{\rm i}}}{Z(\beta)} e^{i\hat{H}_{\rm i}t}\hat{H}_1 e^{-i\hat{H}_{\rm f}t}\hat{H}_1) \qquad F_{\rm fi}^l(q) = \langle\phi_{\rm f}| \frac{\partial}{\partial q_l} |\phi_{\rm i}\rangle_r$$

Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. J. Chem. Phys. 2007, 126, 114302.

N-mode representation (n-MR) theory

azulene (48D)

The first anti-Kasha emissive molecule $S_1 \rightarrow S_0$ internal conversion is very fast

• 1-mode, 2-mode, 3-mode... hierarchical expansion

$$V(q_1, q_2, \cdots, q_N) = V^{(0)}(\boldsymbol{q}^{\text{ref}}) + \sum_i V^{(1)}(q_i; \boldsymbol{q}_{l\neq i}^{\text{ref}}) + \sum_{i < j} V^{(2)}(q_i, q_j; \boldsymbol{q}_{l\neq ij}^{\text{ref}}) + \cdots$$

 $V^{(1)}(q_i; \boldsymbol{q}_{l\neq i}^{\text{ref}}) = V(q_i; \boldsymbol{q}_{l\neq i}^{\text{ref}}) - V^{(0)}(\boldsymbol{q}^{\text{ref}})$ $V^{(2)}(q_i, q_j; \boldsymbol{q}_{l\neq ij}^{\text{ref}}) = V(q_i, q_j; \boldsymbol{q}_{l\neq ij}^{\text{ref}}) - V^{(1)}(q_i; \boldsymbol{q}_{l\neq i}^{\text{ref}})$ $-V^{(1)}(q_j; \boldsymbol{q}_{l\neq j}^{\text{ref}}) - V^{(0)}(\boldsymbol{q}^{\text{ref}})$

Li, G.; Rosenthal, C.; Rabitz, H. J. Phys. Chem. A 2001, 105, 7765.

reorganization energy (check the quality of the PES) units: cm⁻¹

	4-points method	harmonic	1-MR	2-MR
S ₀ surface	3481.9	3399.2	3421.4	3495.7
error		-82.7	-60.5	13.8

b3lyp/6-31g(d)

k_{ic} of azulene from S_1 to S_0

Method	k _{ic} (× 10 ¹⁰ s ⁻¹) at 0 K			k _{ic} (× 10 ¹⁰ s ⁻¹) at 300 K		
	HA	1-MR	2-MR	HA	1-MR	2-MR
TVCF	0.79	-	-	1.00	-	-
TD-DMRG	0.79	1.47 (186%)	3.56 (451%)	0.97	1.86 (192%)	4.53 (467%)

t = 425 fs, SHO basis = 20 100 cm⁻¹ Gaussian broadening

- 1-MR is 2 times the rate of HA
- 2-MR is 4 times the rate of HA

HA: Thermal Vibration Correlation Function approach (TVCF) is analytically exact

Wang, Y.; Ren, J.; Shuai, Z. J. Chem. Phys. 2021,154, 214109.

Final state resolved transition rate

$$k = \int_{-\infty}^{\infty} \langle \psi_0 | \hat{H}_1(t) \hat{H}_1 | \psi_0 \rangle dt$$

=
$$\int_{-\infty}^{\infty} \operatorname{Tr}(\hat{H}_1 | \psi_0 \rangle \langle \psi_0 | \hat{H}_1(t)) dt$$

=
$$\int_{-\infty}^{\infty} \sum_{\{\sigma\}} \langle \{\sigma\} | \rho(t) | \{\sigma\} \rangle dt$$

=
$$\sum_{\{\sigma\}} \int_{-\infty}^{\infty} \langle \{\sigma\} | \rho(t) | \{\sigma\} \rangle dt$$

=
$$\sum_{\{\sigma\}} k(\psi_0 \to \{\sigma\})$$

If the primitive basis $\{\sigma\}$ is the eigenbasis, the final state resolved rate corresponds to each configuration coefficient of the integral of $\rho(t)$.

- HA: SHO (exact)
- 1-MR: VSCF modal (exact)

Mean vibrational quantum number

- High frequency C-H vibrations with ~0 Huang-Rhys factor are able to accept energy;
- the mean vibrational quantum number of the other modes decreases;

the FC factor is larger and the rate is faster.

Ren, J.; Wang, Y.; Li, W.; Jiang, T.; Shuai, Z.* Chinese J. Chem. Phys. 2021, accepted.

Contribution of each final state

Monte Carlo sampling to get 5×10^5 configurations (in total 10⁴⁸)

Ren, J.; Wang, Y.; Li, W.; Jiang, T.; Shuai, Z.* Chinese J. Chem. Phys. 2021, accepted.

k_{ic} of different energy gap

The larger the energy gap, the more pronounced the anharmonic effect.

Ren, J.; Wang, Y.; Li, W.; Jiang, T.; Shuai, Z.* Chinese J. Chem. Phys. 2021, accepted.

Summary

High-accurate, high-efficient TD-DMRG algorithm for high-dimensional quantum dynamics at both zero and finite temperature.

- system-bath model with harmonic bath and linear coupling
- molecular photophysical properties on anharmonic PES

https://github.com/shuaigroup/Renormalizer

Acknowledgement

- Prof. Zhigang Shuai @ THU
- Weitang Li
- Tong Jiang
- Yuanheng Wang

- Prof. Garnet Chan @ Caltech
- Prof. Xing Gao @ SYSU
- Dr. Alexander Eisfeld @ MPIPKS

Thanks for your attention!