Non-adiabatic Dynamics Simulations of Single-Walled

Carbon Nanotubes with Topological sp3-defects:
An On-the-fly NEXMD Study
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Outline

Background / Open Questions

» Thermally activated dynamical exciton trapping/de-trapping

» Dynamical coupling of pristine and defect-localized excitonic manifold
» Chemical nature of defects affects excitonic population

Atomistic Models and Non-adiabatic Evolution
> # Atoms ~ 400 with excitonic effects

Results and Discussion
» Strong dependence on defect orientation and composition

Further Directions



Carbon Nanotubes — A Brief History

Pristine SWCNTSs

* Dipole-forbidden emission from S,



Carbon Nanotubes — A Brief History

Pristine SWCNTSs SWCNTs with Defect

* Dipole-forbidden emission from S, + Allowed S//S, trasition
» Symmetry breaking from defect
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Open Questions

Dark states
Exciton redistribution = T4,

® Redistribution among dark defect states

» Non-adiabatic coupling between dark states

® Thermally activated dynamical exciton
trapping/de-trapping

» Non-adiabatic coupling to band-edge exciton

® How do topological changes to the excitonic
potential energy landscape (stemming from defect Thermal debare
orientation and composition) affect the excitonic & recapture defects
populations during relaxation? Tivesrnaldeersning

Non
radiative

Nonradiative
defects

Zheng et al. ACS Nano 2021, 15, 923-933



Model and Methods

Hamiltonian:
* Semi-empirical AMI

Excited States:
 RPA Equations in CIS Approximation
* Solutions for transition density matrices
provided by the collective oscillator (CEO)
method
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DFTB AM1  DFT  MC-SCF
Non-adiabatic Molecular Dynamics: Hamiltonian

« NEXMD Package

Fewest Switches Surface Hopping (FSSH)
Instantaneous Decoherence Corrections
Unavoided Crossing Detection

Linear Response Solvation
Microcanonical Ensemble (NVE)
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https://github.com/lanl/NEXMD



Initial Conditions o AM1 (NEXMD)

1 Pristine

; _P"ua.

* Ground State Nuclear Wavepacket
e NVT Ensemble, T = 300 K
* 300 trajectories

Absorption

 Initial Electronic Configuration
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* Initial Wavefunction
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Oscillations In Transition Density Come from C-C Bond Stretching
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Excitonic Population

Single-exponential Fit:  SAURS( ERUPY

» Strongly chirality-dependent
* (11,0) shows uniquely fast relaxation (6 = 0°)

» Strongly dependent on chemical composition
» Alkyl and Aryl defects act similarly
« Halide attachment produces fast relaxation
* Ortho(-) coupled with halide produces largest change
from alkyl/aryl rate

Gap law 1s broken for fluorine
defects
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NACT and VH-V Probability Distributions
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* Before and after the hop, the NACT i1s nearly equivalent
* VH-V shows changes in distribution after transferring to lower adiabatic state
« Minimum of PES changes



NACT Probability Distribution Local Charge Distribution Strongly
Affected by Direct Fluorine Attachment

i)

e 50 8 84 54 |
Micieac i IRY

H at Hop

(6,2) O(++) 2CH,

BN at Hop

(6,2) O(++) 2F

B
o

(a) Alkyl/Aryl
| '.-‘
~

~

AO- - - 01

N W
o

-2

Q) (le| x10%)

6
NACT (meV

Kwon et al. J. Am. Chem. Soc. 2016, 138, 6878—6885
Weight et al. J. Phys. Chem. C 2021, 125, 4785—4793



Conclusions and Future Work

* Performed on-the-fly non-adiabatic dynamics simulations of large nanostructures
> # Atoms ~ 400
» Excitonic Effects
» AMI Semi-empirical Hamiltonian

« Extracted population dynamics and made structure — property correspondence
» Fluorinated defects strongly alter the local charge distribution, allowing for increased NACT
» Zig-zag SWCNTs may exhibit fast relaxation compared to chiral SWCNTs
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