

On the Mechanism of Alkylammonium Ligands Binding to the Surface of CsPbBr₃ NCs

<u>Andriy Stelmakh</u>^{a,b}, Marcel Aebli^{a,b}, Andrij Baumketner^{c*}, and Maksym V. Kovalenko^{a,b*} ^aLaboratory of Inorganic Chemistry, Department of Chemistry & Applied Biosciences, ETH Zürich, Switzerland ^bEmpa – Swiss Federal Laboratories for Materials Science and Technology, Switzerland ^cInstitute for Condensed Matter Physics, NAS of Ukraine

Superfluorescence

 (τ_{SF})

Im

Motivation

[2] Applications of CsPbX₃ NCs

(f)

[1]

¹Liu, et al. Nat. Photonics 2021, **15**, 379-385.

²Fei, et al. SID Symposium Digest of Technical Papers, Wiley Online Library: 2020; pp 219-221. ³Navarro-Arenas et al. J. Phys. Chem.

Lett. 2019, 10 (20), 6389-6398. ⁴Raino, et al. *Nature* 2018, **563** (7733), 671-675.

Correlated dipoles

10²

10¹

 10^{-1}

10[°] EQE (%)

Motivation

¹De Roo, et al. *ACS Nano* 2016, **10 (2)**, 2071-2081. ²Bodnarchuk et al. *ACS Energy Lett*. 2019, **4 (1)**, 63-74. ³Imran, et al. *ACS Energy Lett*. 2019, **4 (4)**, 819-824. ⁴Zhang, et al. *Chem. Mater.* 2019, **31 (21)**, 9140-9147. ⁵Krieg, et al. *ACS Energy Lett.* 2018, **3 (3)**, 641-646.

Exploring ligand adsorption using computer simulations

CdCl₂ ligand displacement energies computed at the DFT/PBE level of theory¹

¹Drijvers, et al. *Chem. Mater.* 2018, **30 (3)**, 1178-1186. ²Jaishankar, et al. *Langmuir* 2019, **35 (6)**, 2033-2046.

Free-energy profiles as a function of the distance between stearic acid in heptane and the solid Fe_3O_4 surface calculated using classical MD simulations²

Model and methods

🤵 - Cs⁺

- Pb²⁺

🔵 - Br

- 8×8×3.5 slab of cubic CsPbBr₃, terminated with CsBr-rich (100) crystallographic planes
- Interactions between ions comprising the slab modelled with Coulomb and LJ potentials^{1,2}

¹Joung, et al. J. Phys. Chem. B. 2008, **112 (30)**, 9020-9041. ²Li, et al. J. Chem. Theory Comput. 2013, **9 (6)**, 2733-2748.

Model and methods

- 8×8×3.5 slab of cubic CsPbBr₃, terminated with CsBr-rich (100) crystallographic planes
- Interactions between ions comprising the slab modelled with Coulomb and LJ potentials^{1,2}

¹Joung, et al. J. Phys. Chem. B. 2008, **112 (30)**, 9020-9041. ²Li, et al. J. Chem. Theory Comput. 2013, **9 (6)**, 2733-2748.

- Some surface Cs⁺ ions replaced with alkylammonium ligands
- All-atom CHARMM General Force Field for the organic part³

³Vanommeslaeghe, et al. J. Comput. Chem. 2010, **31 (4)**, 671-690.

technique¹

Binding at infinitely small surface coverage ($\sigma \rightarrow 0$)

PMF profiles

Binding at infinitely small surface coverage ($\sigma \rightarrow 0$)

PMF profiles

EHzürich

Binding at infinitely small surface coverage ($\sigma \rightarrow 0$)

Energetic and entropic contributions

Geometric fit and head-group desolvation

Geometric fit and head-group desolvation

Binding at finite surface coverages

PMF profiles

Comparison with ligand-exchange experiments

Ligand composition

Species	Concentration (mM)	Surface coverage (%)
Binding sites	7.4	-
DDA	1.5 - 1.8	20 - 24
OlAm	3.6 - 3.0	49 - 41
OLA (free)	0.3	-

Species	Concentration (mM)	Surface coverage (%)
Binding sites	7.2	-
DMDDA	3.1	43
OlAm	0.03	≤ 0.5
OLA (free)	0.3	-

Conclusions

Three main factors that govern effective ligand-substrate interactions

	DA	DDA	DMDDA
Geometric fit		\bigotimes	\bigotimes
Low desolvation cost	\bigotimes	\bigotimes	
Kinetic barrier at finite coverage		 Image: A start of the start of	 Image: A start of the start of

 Theoretical findings agree with the results of ligand-exchange experiments (DDA loosely binds to the CsPbBr₃ surface; DMDDA capping is more stable than capping with primary oleylammonium)

Conclusions

Three main factors that govern effective ligand-substrate interactions

	DA	DDA	DMDDA
Geometric fit	S	\bigotimes	\bigotimes
Low desolvation cost		\bigotimes	I
Kinetic barrier at finite coverage	۲	Ø	v

- Theoretical findings agree with the results of ligand-exchange experiments (DDA loosely binds to the CsPbBr₃ surface; DMDDA capping is more stable than capping with primary oleylammonium)
- Ligands with compact, yet fully substituted head-groups are expected to provide even more stable capping of CsPbBr₃ NCs:

Acknowledgements

- Prof. Dr. Maksym V. Kovalenko^{1,2}
- Dr. Andrij Baumketner³
- Marcel Aebli^{1,2}
- Dr. Maryna Bodnarchuk^{1,2}
- Kovalenko Group

Thank you for your attention!

¹Laboratory of Inorganic Chemistry, Department of Chemistry & Applied Biosciences, ETH Zürich, Switzerland

²Empa – Swiss Federal Laboratories for Materials Science and Technology, Switzerland

³Institute for Condensed Matter Physics, NAS of Ukraine

Swiss National Science Foundation