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Plan and main ideas
• Overview

– Dynamics

– Bohmian formulation

• Define and derive local energy

– Not unique in quantum systems

• This is general quantum feature

– Our definition is consistent with classical limit

• (still not unique)

– And with Bohmian formalism

• Study four model systems

– Mostly 1D

• Simplified model double well (analytic)

• Meta-stable well (numerical)

• Also 2D Quantum-Classical

• Lessons for the quantum dynamics community

– Very hard to do exact quantum using Bohmian formalism

– In transition to the classical regime, quantum effects 

become rare (rather than small)



•Potential energy surface describes electronic energy and Coulomb repulsion between 

nuclei.

•Chemical reaction dynamics can be represented classically as motion of a marble on 

this surface

•In practice, one needs many marbles to gather statistics.  To represent experimental 

conditions, marbles should start with different velocities and positions (phase space 

sampling)

•Simplest quantum effects are described by assigning individual marbles to particular 

quantum states (quasiclassical description).



The simplest quantum effect in nearly classical systems is zero-

point-energy (ZPE) correction

Think of a quasiclassical picture, with the system represented by 

an ensemble of trajectories

At present, there is no simple way to account for ZPE along a reaction.  

Important:  ZPE is a property of the whole ensemble, not each trajectory.

What could be the way to describe ZPE-like quantum effects?

• A simple way is to compute the spread of trajectory ensemble, and “somehow” 

fit it to ZPE, then compute forces that come from ZPE.

• In effect, this is what we do in our approximate Bohmian formulation, except it 

is done in a rigorous way: 

 ZPE dependence on spread is indirect; it is directly dependent on the 

average gradients of density

 we introduce non-classical momentum, and obtain ZPE from it. 



Bohmian formulation



Bohmian formulation



Summary of traditional Bohmian approach

• Quantum equations are written in classical way:  

wavefunctions are represented by trajectories, each 

moving according to classical mechanics + additional 

forces from Quantum Potential

+ Formulation is exact, and neatly compatible with 

molecular mechanics

- Quantum potential is non-local, unbound, sometimes 

singular, and horribly unstable



New content. Derivations:

• Next, we introduce two operators

1. Quantum trajectory operator

2. Local energy operator

• Use these operators to introduce the 

“quantum power” expression

– And apply it to model systems



Quantum Trajectory Operator 

• Reminder:  delta-function operator measures density at a 

point.  Delta function operator can be thought as an infinitely 

narrow normalized Gaussian:                   
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• One can show:   
𝜕 𝑔𝑤

𝜕𝑡
= 0 in a quantum system.

• Basically, gW is the quantum trajectory (weight) operator

– It is linear, in Hilbert space

– Can be used to study quantum behavior by non-Bohmian people



Local Energy Operator

• We use gW to define the energy operator:                
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– Which is a trajectory weight multiplied by Bohmian energy

• We define local energy as ratio of the expectation values of 

these two operators

– 𝐸 𝑞𝑡 =
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• And define the central quantity of this talk:  “quantum 
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Local Energy Operator

• We use Heisenberg representation to derive time derivative of 

local energy:



Time derivative, 1D

si and ai are Taylor expansion coefficients of 

phase and  amplitude.  r is non-classical 

momentum, and U is quantum potential



Quantum power properties

• It is semiclassical (goes to zero when m → ∞  or ħ → 0 )

• It does not depend on the external potential V

• Given by a ratio of linear QM operators (i.e. meaningful 

even outside of Bohmian formalism, in traditional QM).



Systems (I): A Gaussian

Conclusion: periodic energy exchange among the trajectories, as expected



Systems (Ia): A Gaussian
The translational motion of a coherent Gaussian wavepacket in a parabolic potential. The QTs, shown 

as thin solid lines, track the dynamics of  the wavefunction, whose footprints are marked as circles.  The 

corresponding Q,  is plotted as straight line segments  for nine instances of time listed in the legend.  

Conclusion: Energy from the trailing edge flows into the leading edge



Systems (Ib): A Gaussian
The breathing motion of an otherwise stationary Gaussian wavepacket in a parabolic potential. The 

snapshots of Q and || are plotted for times indicated at the bottom of each panel.  The vertical axis 

corresponds to Q in a.u. 

Conclusion: Again, energy from the “trailing edge” flows into the “leading edge”



Systems (II): Metastable well

Conclusion: Energy exchange in the potential well helps trajectories to tunnel.



Systems (II): Metastable well
long time, large x quasistatic limit

Conclusion: Energy exchange in the potential well helps trajectories to tunnel.



Systems (II ½): Eckart Barrier
mimicking H + H2 reaction barrier

Conclusion: Complicated dynamics at the barrier, constant recrossing



Systems (II ½): Eckart Barrier
mimicking H + H2 reaction barrier

Conclusion: Complicated dynamics at the barrier, indeed



Systems(III): double well



Double well: minima are at ±1.   

Initial population (at φ=0) is in the left well



Systems: double well



Systems: double well

Conclusions

• Harmonic approximation is qualitatively 

incorrect for tunneling

• The energy redistribution for tunneling 

starts at the distant wall of the empty well

[𝑥0~ ln(1/𝑡) at short t ]

– To describe tunneling with trajectories, the 

whole space needs to be covered with them 

first.  This is an intractable (at least NP) 

problem in a general multidimensional energy 

landscape



Systems (IV): 2D Quantum-Classical

m0=1, λ=m0/m

1D 2D



Systems (IV): 2D Quantum-Classical

m0=1, λ=m0/m

Conclusion:  as 𝜆 → 0 and system gets more classical, 

the quantum effects do not get smaller.  Instead, they 

become less frequent.



To do:
• Find workable 

approximate 

expression for energy 

flow

– To implement with 

quantum trajectories

• Study non-adiabatic 

dynamics

• Check WKB 

Questions?


