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Keeping sane during the pandemic.

in addition, I built a sail boat in my garage...




Overview of topics

—

Ideas/theories related to detecting many-body dynamics and
correlations in excitonic materials

* Attractive and repulsive bi-exciton states in H- and J-
aggregates

* Dephasing dyamics due to non-stationary background
excitations.

* Detecting bi-excitons with quantum light.
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The molecular origin of Frenkel biexciton binding ! 5

—

PBTTT: k E

Biexcitons: consequential intermediates:

* exciton dissociation into electrons (e™) and holes (h™)

So + 2hw — [28;]F —= 2e~ +2hT
* bimolecular annihilation
S1+5; [25,]F — Sy + Sy
singlet fission producing triplet (T,) states
So + 2hw — [28,]F —= 2T, + 2T,

In each of these we see the biexciton [2S;]* as some form of
transition state. HOUSTON
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Evidence: from Carlos Silva’s group 6
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https://arxiv.org/abs/2101.01821

H vs. J biexcitons

—

Possible states:

* H-excitons: aligned L to chain, move || along chain

* J-excitons: aligned || to chain, move L to the chains
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quasi-1D-Lattice Model
—

Focusing on the 1D motion of the exciton state:

A= E0+AZ( 1ye] cJ+tZ(c g1+el,8)

j=1
+ UZ%-T%TH@H- (1)
j=1
E E
+W| ‘ —_— —_— +W| | —*— —
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Crenelation + noise: w = A + A, HOUSTON




1D Schrodinger Eq
—

Set t = —h?/2u and U as the contact interaction.

d4(x)

t
dx2

- US(x)U(x) = E(x). )
Solutions: Taking E/t = 2

U(x) = Ve " (3)

Typical case: t < 0 and U < 0 produce a single state
energetically below the E > 0.
But t > 0 and U > 0 also produce bound state. Possible if ;1 < 0
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Figure — Exciton /exciton radial distribution g(®(r; — r») from 1D lattice
model for increasing crenelation.
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Free vs. bound excitons: t < 0 and U <0

11
parametric threshold for formation of bound excitons?
E(O(/t
e
41t Free
Exciton Pairs
Bound
—42} -
Etree R Biexcitons
=2 fA12+ 4
E U,
—43] —==(7)
t 2t
—4.4]
L L L L U/t
0 1 2 3 4
Figure — Free vs. bound biexciton energies.
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Biexcitons obey current social norms 12
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Figure — Phase diagram for Biexcitons
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Inclusion of static (energetic) disorder 13

—
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Figure — Probability of biexciton formation for disordered lattices. Curves
are labeled by the interaction U for U/t =2.5to U/t =2.1
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Summary 14

—

* First detection (that we’re aware of) of repulsive and
attractive bound bi-exciton states in same material.

* Model suggests that both kinds of biexcitons should be
detectable in a wide range of materials as tuned by exciton
interaction and hopping integrals.

* Robust against static lattice noise, although disorder may
cause local traps
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Silva: Excitons in (PEA),Pbl,
—
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Road map: excitons in 2D perovskites

Linear spectral lineshape — spectral structure
Exciton polaron effects

Nonlinear spectral lineshape — dephasing

A.R. Srimath Kandada, C. Silva, J. Phys. Chem. Lett. 11,

15

3173-3184 (2020) HOUSTON




2D coherent excitation lineshape (t,op =0; T =5K) 16
—

Excitation-density-dependent
dephasing rate

y(n)=v%+A-n
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17

2D coherent excitation lineshape
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2D coherent excitation lineshape (T = 5K) 18
—
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I: Stochastic scattering theory for excitation-induced dephasing 3 19

In low-dimensional/solid state systems, one has local field

effects due to background excitations viz. dn(r) = dD(er)dU(r),
which leads to a screening length.

E

/ [N
5
k # 0 batkground Nk 2 .l \ ,
~_excitons > - = N
~\ | /— s o B 08

Stationary

Narrow excitation pulse widths ~» broad band excitation ~
transient local field effects.

HOUSTON
3J. Chem. Phys. 153, 154115 (2020); J. Chem. Phys. 153, 164706 (2020)


https://aip.scitation.org/doi/10.1063/5.0026467
 https://doi.org/10.1063/5.0026351

Excitation-induced dephasing 20

—

We start from many-body exciton theory:*

~

H= [ gn(FENTr 45 [ a5 V(= i)
)

After some (hopefully) well justified approximations,we arrive
at an effective Hamiltonian (with i = 1)

V.,
Ho(t) ~ wgagao + fagagaoao + 2Voa$aoN(t) (5)

with N(t) giving the inst. population of background excitations.

4The form of the exciton/exciton interaction doesn’t matter for s-wave
scattering since I can replace the true potential with a fictitious poteit@ISTON

with same scattering length.



Stochastic model 21

—

Model: background excitations N(t) scatter from k = 0 excitons
and create energy gap fluctuations (similar to Kubo/Anderson)
Exciton (system) operators:

30(t) = exp{ <—i(w0 + %ﬁo)t — v, /Ot N(T)dT) }ao = U(t)%,

Postulate: N(t) follows an Ornstein/Uhlenbeck process.
dN = —~vNdt + odW (7)

where (dW(t))? = dt (from Ito Calculus)
This gives (N(t)) = Noe 7t.

HOUSTON




Response functions 22

-
Linear responses (v = 2V,)
(30(1)3}(0)) = <ao(0)ag(0) exp [—iwot —im /O t dTN(T)] > (8)
(al(1)30(0)) = <ag(0)ao(0) exp [+iwot + i /0 t dTN(T)] > (9)
Need to be careful in evaluating the cumulants,

< e ly dTN(T)> — o= Jy dT(N(T) 4 fo dry [if dra(N(r1)N(72))

— e~ imai(t) g—rig(t)/2 (11)

since the covariance (N(t)N(t")) # (N(t — t')N(0)) since we're
dealing with a non-stationary ensemble. HOUSTON




Linear lineshapes 23

—
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Figure — The linear response function comparison between the
non-stationary and the Anderson-Kubo (AK) model in the case of zero
initial background population Ny at different distributions o3, = 0.25,
0.125, and 0.04 fs~. Other parameters are V, = 10 meV, v = 0.01 fs !,
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Non-stationary background
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Figure — The linear response function with (a) increasing background
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population density Np, and (b) different relaxation rate +, from the

homogeneous limit of v = 50 meV to the inhomogeneous limit of v = 2

meV.
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Model features 25

—

Blocking: Increasing the initial background suppresses the
peak absorption intensity.

Energy shift: The peak position shifts to the blue with
increasing background population due to increased
Coulombic interactions.

Broadening: The spectrum acquires a long tail extending to
the blue due to the dynamical evolution of the background.
This feature also appears in the 2D coherent spectroscopy
as an asymmetry along the absorption axis and as phase
scrambling in the rephasing and non-rephasing signals. [?]

Biexciton: The peak is split by Vy corresponding to the
biexciton interaction.

HOUSTON




Non-linear C coherent spectroscopy
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Figure — Double-sided Feynman Diagrams for coherent response

26

functions with rephasing phase matching (top): (a) Rza, (b) Rsa, (¢) R},
and non-rephasing phase matching (bottom): (d) Ria, (€) Raa, (f) R3,.
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2d coherent lineshapes 27

—

Emission Energy (eV)  Emission Energy (eV)

Figure — Theoretical real and imaginary spectra, respectively, of
rephasing [(a), (b)] and nonrephasing [(c), (d)] phase matching and at
population waiting time 7, = 0fs. The vertical false color scale indicated
to the right if the figure is in arbitrary units.
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Evolution of rephasing peak 28
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Figure — (a)—(d): Real parts of theoretical rephasing spectra at
population times 7, indicated at the top of each panel. (e)-(h):
Corresponding imaginary parts of the spectrum. (i)—(I): The norm
(absolute value) of the optical response.




Evolution of rephasing peak 29

—
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Figure — Exciton 2D coherent lineshape contour at half-maximum
intensity as a function of population waiting time derived from the

theoretical rephasing absolute spectral evolution in Fig. 9. The centrpusToN
mass and one of the principle axes are shown for each contour.



Summary

—

Model gets it right!

30
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Summary 31

—

* Stochastic model for background-induced dephasing/energy
shifts.
® Use of Ito calculus + SDE to model nonstationary
background exciton population.
® Can extend to more correlated noise models (Hao Li +
ERB, in prep).
® Numerical: use methods from qualitative finance!
* Frenkel Biexcitons
® Long predicted (Agranovich, 60’s)
® Readily seen in quantum dots (Wannier excitons)
® Both 2J and 2H species seen in same sample!
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....Also, there is NO ENTANGLEMENT!
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