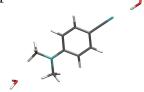


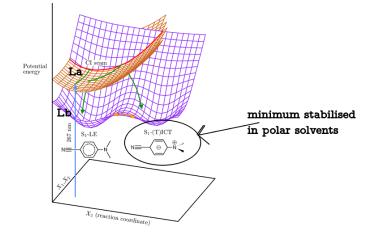
sandra.rodriguez@ucl.ac.uk

@quimicafisica1



Quantum trajectories (DD-vMCG) for DMABN non-adiabatic dynamics

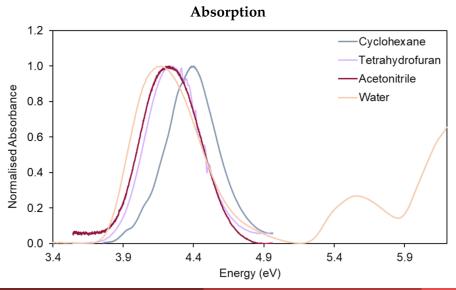
Sandra Gómez


Virtual International Seminar on Theoretical Advancements

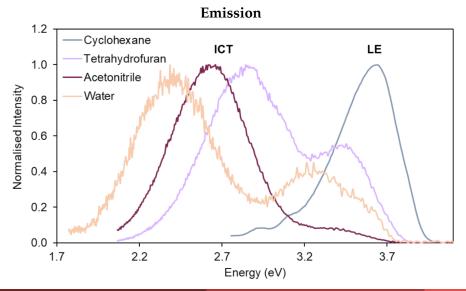
May 12, 2021

Why is DMABN interesting?

presents double fluorescence - that does not happen in gas phase



M. A. Kochman, A. Tajti, C. A. Morrison and R. J. D. Miller, J. Chem. Theory Comput. 2015, 11, 1118-1128


Experimental evidence - we went to the lab!

Experimental evidence - we went to the lab!

Experimental evidence - we went to the lab!

Back to work - no more playing

* frame from the film 300

Questions we would like to answer

- How is the geometry of ICT state minimum? torsionated?
- How/when is it formed?
- How the different solvents (gas/THF/acetoN/water) affect this?

• Can we theoretically predict the absorption and emission spectra in the different solvents?

Electronic Structure results - Esra's master thesis

- Benchmark TDDFT scans vs CASPT2/EOM-CCSD in gas phase
- Benchmark of many TDDFT functionals and basis sets in solution
- Structure optimisations, LE and ICT in 4 diff solvents

Solvent	Solvent Method	Solvent Method Basis Set Ab:		orption Emis		n
			¹ Lb	¹ La	LE	CT
Gas		cc-pVDZ	4.86	5.23	4.51	3.02
Tetrahydrofuran	PCM	cc-pVDZ	4.72	4.79	4.27	3.32
	Two explicit solvent molecules + PCM	cc-pVDZ	4.69 (4.58)	4.73 (4.63)	4.21	2.95
	Two explicit solvent molecules	cc-pVDZ	4.76 (4.64)	4.97 (4.88)		
	One explicit solvent molecule + PCM	cc-pVDZ	4.73 (4.60)	4.77 (4.67)		
	One explicit solvent molecule	cc-pVDZ	4.81 (4.68)	5.05 (4.95)		
Acetonitrile	PCM	cc-pVDZ	4.72	4.78	4.19	3.28
	Two explicit solvent molecules + PCM	cc-pVDZ	4.71 (4.59)	4.74 (4.62)	4.16	3.21
	Two explicit solvent molecules	cc-pVDZ	4.77 (4.63)	4.97 (4.86)		
	One explicit solvent molecule + PCM	cc-pVDZ	4.73 (4.60)	4.75 (4.63)		
	One explicit solvent molecule	cc-pVDZ	4.82 (4.69)	5.03 (4.93)		
Water	PCM	cc-pVDZ	4.72	4.78	4.18	3.27
	Two explicit solvent molecules + PCM	cc-pVDZ	4.71 (4.59)	4.71 (4.59)	4.12 (4.00)	3.15 (3.14)
	Two explicit solvent molecules	aug-cc-pVDZ	4.64	4.88	4.34	3.28

Next: non-adiabatic dynamics with TDDFT/wB97X/cc-pvDZ

Sandra Gómez

DMABN dynamics on the Literature

Paper	Dyn Method	QC Method	InitConds	phase
Lan2015	FSSH	TDDFT/CAM-B3LYP/6-31G*	50 traj / Wigner / from S2	gas
Kochman2015	FSSH	ADC(2)/cc-pvDZ	24 traj / Wigner / from S2	gas
Martinez2016	AIMS	LR-TDDFT/wPE/6-31G	21 traj / Wigner / from S2	gas
Subotnik2017	A-FSSH	TDDFT/ωB97X/cc-pvDZ	200 traj /AIMD / from S2	gas/MECN
Durbeej2020	FSSH	QMMM/TIP3/ADC(2)/cc-pvDZ	50 traj / Wigner+MD / from S2	gas/water

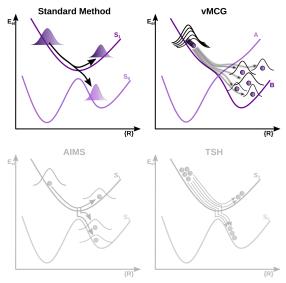
DMABN dynamics on the Literature

Paper	Dyn Method	QC Method	InitConds	phase
Lan2015	FSSH	TDDFT/CAM-B3LYP/6-31G*	50 traj / Wigner / from S2	gas
Kochman2015	FSSH	ADC(2)/cc-pvDZ	24 traj / Wigner / from S2	gas
Martinez2016	AIMS	LR-TDDFT/wPE/6-31G	21 traj / Wigner / from S2	gas
Subotnik2017	A-FSSH	TDDFT/ωB97X/cc-pvDZ	200 traj /AIMD / from S2	gas/MECN
Durbeej2020	FSSH	QMMM/TIP3/ADC(2)/cc-pvDZ	50 traj / Wigner+MD / from S2	gas/water

Paper	S2→S1 time	torsion needed?	ICT detected?
Lan2015	80 fs	X	X
Kochman2015	25 fs	X	√ 500fs
Martinez2016	50 fs	X	$$ S1 dyn \rightarrow 90°torsion at 1ps
Subotnik2017	50fs	X	x
Durbeej2020	30 fs	X	√ in water, 1ps

solvent does not influence the early dynamics

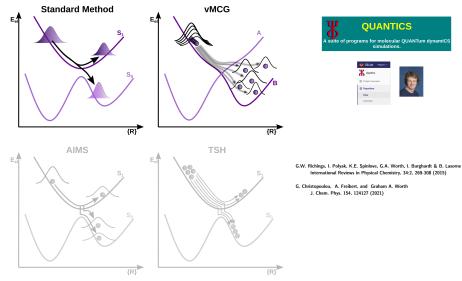
ICT happens on the S1 BO surface at at least 500 fs


DMABN dynamics on the Literature

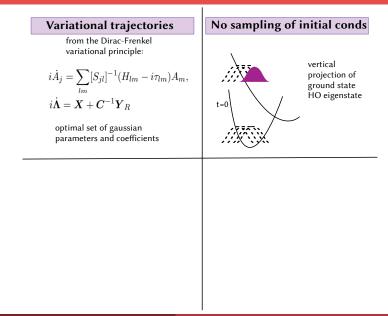
Paper	Dyn Method	QC Method	InitConds	phase
Lan2015	FSSH	TDDFT/CAM-B3LYP/6-31G*	50 traj / Wigner / from S2	gas
Kochman2015	FSSH	ADC(2)/cc-pvDZ	24 traj / Wigner / from S2	gas
Martinez2016	AIMS	LR-TDDFT/wPE/6-31G	21 traj / Wigner / from S2	gas
Subotnik2017	A-FSSH	TDDFT/ωB97X/cc-pvDZ	200 traj /AIMD / from S2	gas/MECN
Durbeej2020	FSSH	QMMM/TIP3/ADC(2)/cc-pvDZ	50 traj / Wigner+MD / from S2	gas/water

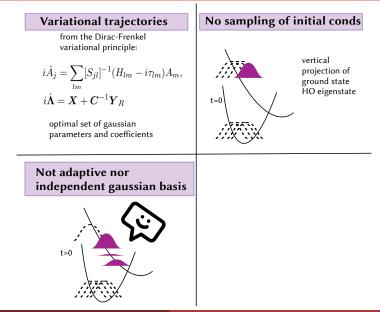
Paper	S2→S1 time	torsion needed?	ICT detected?
Lan2015	80 fs	X	X
Kochman2015	25 fs	X	√ 500fs
Martinez2016	50 fs	X	$$ S1 dyn \rightarrow 90°torsion at 1ps
Subotnik2017	50fs	X	x
Durbeej2020	30 fs	X	√ in water, 1ps

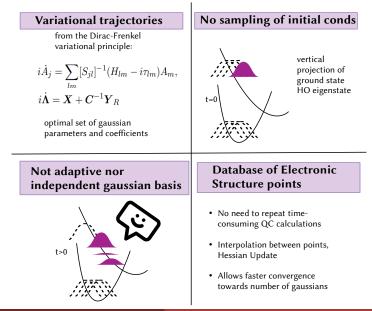
- solvent does not influence the early dynamics
- ICT happens on the S1 BO surface at at least 500 fs


Our dynamics method: DD-vMCG

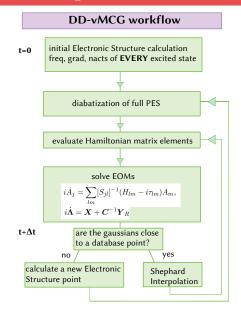
Credit: Lea Ibele

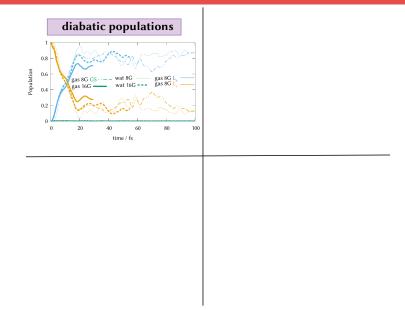

Sandra Gómez

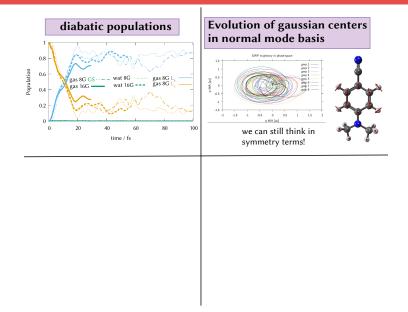

Our dynamics method: DD-vMCG

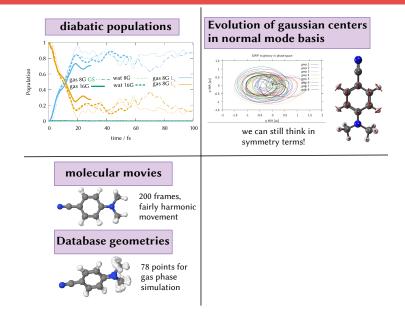


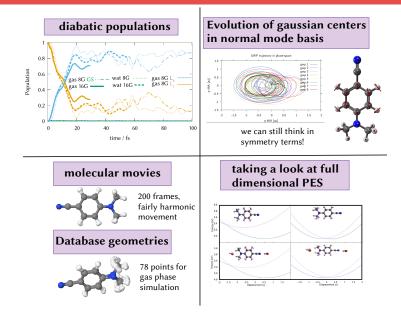
Credit: Lea Ibele


Variational trajectories from the Dirac-Frenkel variational principle: $i\dot{A}_j = \sum_{lm} [S_{jl}]^{-1} (H_{lm} - i\tau_{lm}) A_m,$ $i\dot{\mathbf{\Lambda}} = \mathbf{X} + \mathbf{C}^{-1}\mathbf{Y}_{R}$ optimal set of gaussian parameters and coefficients








How does it work in practice?

- Theoreticians can measure their own spectra
- DD-vMCG can reproduce early non-adiabatic dynamics results in DMABN
- slight differences in gas/water

• Quantics is a very powerful tool to run and analyse on-the-fly dynamics

Acknowledgements

Special thanks to: Esra Soysal

Mike Parkes

Graham Worth