

How to calculate NAC with PW accurately and efficiently

VISTA

Weibin Chu

Department of Chemistry University of Southern California

1) Why an accurate NAC is important

Non-radiative Recombination

Error accumulation

Non-adiabatic Ring polymer molecular dynamics

Bead average NAC

Machine Learning

Predictive NAC

2) What is NAC

$$i\hbar \frac{\partial \Psi(\boldsymbol{r}, \boldsymbol{R}, t)}{\partial t} = H(\boldsymbol{r}, \boldsymbol{R}, t) \Psi(\boldsymbol{r}, \boldsymbol{R}, t)$$
$$\Psi(\boldsymbol{r}, \boldsymbol{R}, t) = \sum_{j} c_{j}(t) \psi_{j}(\boldsymbol{r}; \boldsymbol{R}(t))$$
$$i\hbar \frac{\partial c_{j}(t)}{\partial t} = \sum_{k} c_{k}(t) [\varepsilon_{j} \delta_{jk} - i\hbar \boldsymbol{d}_{jk} \cdot \dot{\boldsymbol{R}}]$$

Non-adiabatic coupling (scalar)

$$\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \langle \psi_j | \nabla_{\boldsymbol{R}} | \psi_k \rangle \cdot \dot{\boldsymbol{R}} = \frac{\left\langle \psi_j | \nabla_{\boldsymbol{R}} \hat{H} | \psi_k \right\rangle}{\varepsilon_k - \varepsilon_j} \cdot \dot{\boldsymbol{R}}$$

HST Equation

$$\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \left| \psi_k \right\rangle = \frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \right| \psi_k(r,t) \right\rangle \right)$$

 ψ_i Adiabatic Wavefunction

- Planewaves Basis Set
- Atomic Basis Set
- Mixed

Widely used in Condensed matter systems Metal; Surface; Solid

3) What are NACs look like

Halide Perovskite

Interband relaxation only couples with ultra low-frequency lattice phonon

Before

Calculated with CAnac (All corrections are included)

Conventional NAC without any correction

Basic concepts about PAW

Frozen core approximation

No core orbitals are taken into account in the whole calcualtion

- The all-electron (AE) wavefunction in PAW, also known as true or exact wavefunction, has nothing to do with the core electrons wavefunction (e.g. WIN2K)
- AE wavefunction oscillates sharply within the core region
 Large cutoff; Expensive

 PS wavefunction is identical with corresponding AE wavefunction outside the core region
Small cutoff; Efficient; But wrong shape in the core region

Basic concepts about PAW

ith AE partial wave of atom a

Exact NAC with PAW

$$|\psi_{\mathbf{k}}\rangle = \widehat{\mathcal{T}}|\widetilde{\psi}_{\mathbf{k}}\rangle = |\widetilde{\psi}_{\mathbf{k}}\rangle +$$

$$\sum_{a}\sum_{i}(|\varphi_{i}^{a}\rangle-|\widetilde{\varphi}_{i}^{a}\rangle)\langle\widetilde{p}_{i}^{a}|\widetilde{\psi}_{k}\rangle$$

HST Equation

$$\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \left| \psi_k \right\rangle = \frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \left| \psi_k(r,t) \right\rangle \right) \right\rangle \right)$$

- AE WFN has never been used in the SCF calculation
- PS WFN is based on PW grids, while other partial waves and projector function are based on atom centered radial grids.
- PS WFN is readily available (VASP WAVECAR QE pwscf.save/K0001 etc.)
- So people used PS WFNs instead without rigid test for a long time

$$\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \left\langle \tilde{\psi}_j \left| \frac{\partial}{\partial t} \left| \tilde{\psi}_k \right\rangle = \frac{1}{2dt} \left(\left\langle \tilde{\psi}_j(r,t) \left| \tilde{\psi}_k(r,t+dt) \right\rangle - \left\langle \tilde{\psi}_j(r,t+dt) \right| \tilde{\psi}_k(r,t) \right\rangle \right)$$

• PS WFNs are neither orthonormal nor eigen wavefunction

PS NAC fails for transition metal

Deviation between exact NAC and PS NAC

 $|\psi_{k}\rangle = \hat{\mathcal{T}} |\widetilde{\psi}_{k}\rangle = |\widetilde{\psi}_{k}\rangle + \sum_{a} \sum_{i} (|\phi_{i}^{a}\rangle - |\widetilde{\phi}_{i}^{a}\rangle) \langle \widetilde{p}_{i}^{a} |\widetilde{\psi}_{k}\rangle$

Exact NAC with PAW

$$\begin{split} |\psi_{k}\rangle &= \hat{\mathcal{T}} |\tilde{\psi}_{k}\rangle = |\tilde{\psi}_{k}\rangle + \sum_{a} \sum_{i} (|\phi_{i}^{a}\rangle - |\tilde{\phi}_{i}^{a}\rangle) \langle \tilde{p}_{i}^{a} |\tilde{\psi}_{k}\rangle \\ \chi_{k}^{a} &= \sum_{i} |\phi_{i}^{a}(r)\rangle \langle \tilde{p}_{i}^{a} |\tilde{\psi}_{k}\rangle \qquad \tilde{\chi}_{k}^{a} = \sum_{i} |\tilde{\phi}_{i}^{a}(r)\rangle \langle \tilde{p}_{i}^{a} |\tilde{\psi}_{k}\rangle \end{split}$$

For any operator A

 $\left< \tilde{p}_i^a \middle| \tilde{\phi}_j^a \right> = \delta_{ij} \qquad \phi_i^a(r) = \left. \tilde{\phi}_i^a(r) \right> |r - R_0| > r_c$

$$\tilde{\psi}_k(r) = \sum_i \left| \tilde{\phi}_i^a(r) \right\rangle \left\langle \tilde{p}_i^a \left| \tilde{\psi}_k \right\rangle \quad |r - R_0| < r_c$$

If A is a local operator, Term 2 and Term 3 are zero However d/dt is a nonlocal operator

Concentric Approximation (CA) NAC

• Main idea :

If you don't know how to calculate it, consider to neglect it

• But this is science :

Prove approximation is reasonable

Atom center moves much slower ~<0.2% of core radius in 1 fs

$$\begin{split} \boldsymbol{d}_{\boldsymbol{j}\boldsymbol{k}} \cdot \dot{\boldsymbol{R}} &= \left\langle \psi_{\boldsymbol{j}} \right| \frac{\partial}{\partial t} \left| \psi_{\boldsymbol{k}} \right\rangle \\ &= \frac{1}{2dt} \left(\left\langle \tilde{\psi}_{\boldsymbol{j}}(\boldsymbol{r},t) \right| \tilde{\psi}_{\boldsymbol{k}}(\boldsymbol{r},t+dt) \right\rangle - \left\langle \tilde{\psi}_{\boldsymbol{j}}(\boldsymbol{r},t+dt) \right| \tilde{\psi}_{\boldsymbol{k}}(\boldsymbol{r},t) \right\rangle \right) \\ &+ \frac{1}{2dt} \sum_{\boldsymbol{a}} \sum_{i} \sum_{i\prime} C^{*a}_{\boldsymbol{j},i}(t) \left(\left\langle \phi_{i}^{a} \right| \phi_{i\prime}^{a} \right\rangle - \left\langle \tilde{\phi}_{i}^{a} \right| \tilde{\phi}_{\prime}^{a} \right\rangle \right) C^{a}_{\boldsymbol{k},i\prime}(t+dt) \\ &- \frac{1}{2dt} \sum_{\boldsymbol{a}} \sum_{i} \sum_{i\prime} C^{*a}_{\boldsymbol{j},i}(t+dt) \left(\left\langle \phi_{i}^{a} \right| \phi_{i\prime}^{a} \right\rangle - \left\langle \tilde{\phi}_{i}^{a} \right| \tilde{\phi}_{i\prime}^{a} \right\rangle \right) C^{a}_{\boldsymbol{k},i\prime}(t) \end{split}$$

 $\langle \phi_i^a | \phi_{i\prime}^a \rangle - \langle \tilde{\phi}_i^a | \tilde{\phi}_{i\prime}^a \rangle$ constant for given pseudopotential $C = \frac{a}{k,i\prime}$ readily available for every SCF employ PAW

JPCL 2021 12, 3082-3089

Concentric Approximation (CA) NAC

Exact NACCA NACCalculation Time3~8 minutes0.03 s+ IO 0.5 sEven exact NAC code needs to consider some approximation

(c) Cu

(c) CH3OH @ TiO2 Surface (d) CH3OH @ TiO2 Surface

VISTA, 4 / 28 / 2021

meV

0.8

0.6

0.4

0.2

Concentric Approximation (CA) NAC

 $dt \sim 10$ fs, which is too large to be used in practical NAMD simulations

CA method still proved reliable

HST Equation

$$\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \right| \psi_k \right\rangle = \frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \right| \psi_k(r,t) \right\rangle \right)$$

Main source of instability

Issue 1. Non-orthogonal basis sets

$$\boldsymbol{d_{jk}} \cdot \boldsymbol{\dot{R}} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \left| \psi_k \right\rangle = \frac{1}{2dt} \begin{pmatrix} \left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t) \left| \psi_k(r,t) \right\rangle \\ + \left\langle \psi_j(r,t+dt) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \left| \psi_k(r,t) \right\rangle \end{pmatrix} \right\rangle \right\rangle$$

Akimov et al., *JCTC*. 2016, 12, 5719

HST Equation

$$\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \right| \psi_k \right\rangle = \frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \right| \psi_k(r,t) \right\rangle \right)$$

Main source of instability

Issue 2. Phase inconsistence

determined by the diagonalization routine; basically, it's random

For real wavefunction, you have 25% possibility to get a correct NAC

For complex wavefunction, you have almost zero possibility to get a correct NAC

Issue 3. Trivial Crossing / Unavoided Crossing

 $\boldsymbol{\psi}$ $\boldsymbol{d_{jk}} \cdot \dot{\boldsymbol{R}} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \left| \psi_k \right\rangle = \frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \right| \psi_k(r,t) \right\rangle \right)$

 $\approx \frac{1}{dt}$

 ψ_i

In reality

$$\frac{1}{2dt} \left(\left\langle \psi_j(r,t) \middle| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \middle| \psi_k(r,t) \right\rangle \right)$$

$$d_{jk} \cdot \dot{R} = \left\langle \psi_j \left| \frac{\partial}{\partial t} \left| \psi_k \right\rangle = \frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \left| \psi_k(r,t) \right\rangle \right) \right.$$

In reality
$$\frac{1}{2dt} \left(\left\langle \psi_j(r,t) \left| \psi_k(r,t+dt) \right\rangle - \left\langle \psi_j(r,t+dt) \left| \psi_k(r,t) \right\rangle \right) \right.$$

Phase issue

Spikes for interband relaxation!

Large gap

 ψ_k

Issue 1. Non-orthogonal basis sets Solution Use orthogonal basis sets

Issue 2. Phase inconsistence

Solution Phase correction

30 20 10 0 -10 -20 -30 0 200 400 600 800 1000 Time (fs)

A single issue has limited impact, but putting these problems together may magnify the error several hundred times

Akimov, JPCL 2018, 9, 6096–6102

Issue 3. Trivial Crossing / Unavoided Crossing

Solution State tracking

```
Tretiak et al., JCP 2012, 137, 10
```

Rely on overlap $\langle \psi_j(t) | \psi_j(t+dt) \rangle$

Rely on overlap $\langle \psi_i(t) | \psi_k(t+dt) \rangle$

Error in pseudo overlap are much larger ~5% to 30%

CAnac can helps!

Code available : https://github.com/WeibinChu/CA-NAC

Acknowledgement

Advisors:

Prof. Oleg Prezhdo	Univ of Southern California (Postdoc advisor)
Prof. Jin Zhao	Univ of Science & Technology of China (PhD advisor)
Collaborators:	
Prof. Wissam Saidi	Univ of Pittsburgh

Prof. Alexey Akimov Univ at Buffalo

Thank You!

wc_086@usc.edu

