Ultrafast Nonlinear Plasmon Decay Processes in Silver Nanoclusters

Time

Gowri Kuda-Singappulige Adviser: Christine Aikens

VISTA Seminar 15 03/31/2021 Plasmonic nanostructures for light-induced processes

Enhanced Solar Energy Conversion

ACS Appl. Energy Mater. 2020, 3, 2, 1821-1830

Plasmon-Induced Selective Catalysis

J. Am. Chem. Soc. 2016, 138, 30, 9361–9364

INTRODUCTION

NIVERSITY

U

Plasmon decay in silver nanoparticles

Nat. Commun., 2015, 6, 10107

Plasmonic energy transferred into single-particle (hot-carrier) excitation

ACS Nano 2020, 14, 9963-9971

Density matrix (P)

Molecular orbitals as LCAOs

Density matrix elements

$$\Psi_a = \sum_{\mu}^{N/2} C_{a\mu} \, \phi_{\mu}$$

 Ψ_a = Molecular orbital ϕ_{μ} = Atomic orbital $C_{a\mu}$ = Expansion coefficient

 $P_{ab} = 2 \sum_{\mu}^{N/2} C_{a\mu} C_{b\mu}^*$ P_{ab} = Density matrix element of molecular orbital pair *a* ar molecular orbital pair a and bN = Number of electrons

- Molecular orbital Ψ_i Molecular orbital Ψ_i P_{N1} \cdots P_{NN} P_{N1} \cdots P_{NN} P_{N1} \cdots P_{NN} P_{N1} \cdots P_{NN} P_{NN}
- Diagonal elements $P_{aa} \rightarrow$ electron

population in molecular orbital *a*

transition between orbitals a and b

a = occupied, b = virtual

Magnitude of Pov(t): Amount of electronic transition occurring between the occupied (O) and the virtual (V) orbital at time t.

$Ag_8(T_d)$ - Electronic structure and optical properties

- Two sharp peaks at 3.05 eV and 3.96 eV
- Constructive contribution of multiple electronic transitions: molecular analog of a plasmon resonance in Ag₈ nanocluster

$Ag_8(T_d)$ - Real-time electron dynamics

Excite 3.96 eV state

Observe the dipole response

KANSAS STATE

RS

Ε

UNIV

- Maximum strength = 0.001 au (~3.57×10¹³ W/cm²) with a given frequency
 - Time step = 0.002 fs; Total time = 240 fs
- BP86/LanL2DZ level of theory
- Development version of Gaussian

$Ag_8(T_d)$ - Real-time electron dynamics

Can we identify the decay mechanism? Hypothesis: Electronic Transitions

Variation of dipole moment dominated by responsible transitions for a given excitation

Emergence of other transitions that grow even after the field is turned off

Off-diagonal elements

Dipole moment 12 **Dipole Moment** 8 Fourier transform of P_{ov} (Debye) 4 30000 0 75-81 45-86 -4 25000 Intensity (Arbitrary Units) -8 20000 -12 0 20 60 80 200 220 240 120 140160 180 40 100Time (fs) 15000 75-81 45-86 10000 $(1P \rightarrow 1D)$ $(1S \rightarrow 1F)$ 0.8 5000 0.4P_{OV} 0.0 0 8 10 6 -0.4 Energy (eV) -0.8 200 20 40 60 80 100 120 140 160 180 220 240 P₇₅₋₈₁: One Photon Time (fs) Absorption ($\boldsymbol{\omega}$) **Off-diagonal elements**

Transitions responsible for the resonant excitation decay into excitations with twice the incident frequency

 P_{45-86} : Two Photon Absorption (2 ω)

KANSAS STATE

Selection rules - Dipole allowed transitions in T_D

If **direct product** of symmetries of the two orbitals involved in a transition **reduced to T**₂, the transition is allowed for

One-Photon Absorption

Transitions contribute to the resonant excited state follow the OPA selection rules

T _d	Ш	8C ₃	3C ₂	6S4	6σ _d	linear functions, rotations	quadratic functions
A ₁	1	1	1	1	1		x ² +y ² +z ²
A ₂	1	1	1	-1	-1		
Е	2	-1	2	0	0		(2z ² -x ² -y ² , x ² -y ²)
T ₁	3	0	-1	1	-1	(R _x , R _y , R _z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

Excitation energy (eV)	Transitions	Spherical assignments	Symmetry	Direct product decomposition into irreducible representation
4.03	75 → 81 74 → 81	1P → 1D	$T_2 \rightarrow E$	T ₁ + T ₂
	76 → 77	1P → 1D	$T_2 \rightarrow T_2$	A ₁ + E + T ₁ + T₂
	75 → 80	1P → 2S	$T_2 \rightarrow A_1$	T ₂
	$\begin{array}{c} 66 \rightarrow 78 \\ 66 \rightarrow 79 \end{array}$	d-band → 1D	$E \rightarrow T_2$	T ₁ + T ₂

Selection rules - Quadrupole allowed transitions in T_D

If direct product of symmetries of the two orbitals involved in a transition can be reduced to A_1 , E or T_2 , then that transition can be allowed for

Two-Photon Absorption

Transitions oscillating with 2ω frequency follow the TPA selection rules

T _d	E	8C ₃	3C ₂	6S4	6σ _d	linear functions, rotations	quadratic functions
A ₁	1	1	1	1	1		x ² +y ² +z ²
A ₂	1	1	1	-1	-1		
Е	2	-1	2	0	0		(2z ² -x ² -y ² , x ² -y ²)
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

Excitation energy (eV)	Transitions	Spherical assignments	Symmetry	Direct product decomposition into irreducible representation
8.07	45 → 86	1S → 1F	$A_1 \rightarrow A_1$	A ₁
	$72 \rightarrow 92$ $71 \rightarrow 90$ $73 \rightarrow 90$	d-band → 1F	$T_1 \rightarrow T_2$	A ₂ + E +T ₁ + T₂
	$68 \rightarrow 90$ $69 \rightarrow 91$ $69 \rightarrow 92$ $70 \rightarrow 91$ $70 \rightarrow 92$	d-band → 1F	$T_2 \rightarrow T_2$	A ₁ + E + T ₁ + T ₂

CONCLUSIONS

Plasmon decay in silver nanoparticles

- Energy transferred to excite the transitions with twice the resonant energy
- Point group symmetry and frequency analysis of the transitions confirms high energy transitions are due to the two-photon absorption
- Energy transfer to activate non-linear
 properties → A plasmon decay mechanism
- Plasmon resonance plays a significant role in enhancing non-linear effects

Time

Acknowledgements

Prof. Xiaosong Li

Dr. David Lingerfelt

Andrew Wildman

at University of Washington

Prof. Aikens Aikens and Liu group members

Department of Chemistry Kansas State University

