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- The complexity and  size  of  WF  scale exponentially

- Space-fixed grids/bases are inefficient for large amplitude 
motion

- Use time-dependent bases, representations, trajectories 
adaptable to WF 

- Include some physics of a system, e.g. mass, energy and 
time-scale separation

- Factorization or layers for WFs

- Want time-dependent means to solve the TDSE

quantum dynamics ~ quantum nuclei   



trajectory-guided  (and related)  basis functions 

Gaussian basis functions GBFs (often taken as ‘frozen’)

• Variational Multiconfigurational Gaussians

• Coupled Coherent Gaussians (classical trajectories)

• Full multiconfiguration spawning

• Multiconfiguration Ehrenfest, cloning 

• GBF reexpansions -- basis set leaping, matching pursuit,

exploratory trajectories

Saller and Habershon 
JCTC 11(1):8–16, 2015.



Why Gaussians?   

Thawed Gaussians solve TDSE for locally harmonic potentials

complex A

Absorption and Photoelectron Spectra of Ammonia  Wherle et al  

J. Phys. Chem. A, 2015, 119 (22), pp 5685–5690



o Nuclei are nearly classical; CM scales linearly

o Trajectory framework is convenient for mixed  
representations

o The QT formulation  has classical and  quantum ‘regimes’

o Approximate implementation gives cheap estimates of the 
dominant QM effects

Why (quantum) trajectories?

SG, Rassolov JCP 120, 6815 (2004)

SG, J. Jakowski, L. Wang, B.G. Sumpter, JCTC 9  (2013)

o QTs define an ideal ‘grid’ in 
coordinate space 



Continuity of

WF y = |y| e i s(x,t)

QT (q,p)

quantum potential

|y|2dx along a QT is  constant



QT-guided adaptable Gaussian Bases (QTAG)

GBF parameters 

WF expansion in GBFs

(i) use real frozen GBFs: sj=0, pj=0, real aj

(ii) no quantum force  

Gu and SG JPCA 120 (2016)



Basis N 10 12 16 QM

a [a.u.] 16 16 32 512 pnt

n=0 .4827 .4822 .4830 .4829

n=1 .7110 .7180 .7209 .7163

1D double well 2D Vb=0.6366 [frequency] 

Convoluted WF for smoother  p

(don’t need perfect QTs after all)

Re-expansion for stability and basis size 
adjustment

Basis degeneracy if GBFs are close

(want  adaptable GBFs)

QTs ‘optimize’ the basis in coordinate 
space w/out solving the variational eqs

Relation to the fully variational basis?



general variational GBF time-dependence

S := GBF overlaps

I :=  unit matrix 

subspace  complementary to that covered by the basis

resolution of 
identity in a basis 

if the basis is good the variational  equations are singular

GBF parameters 



instead consider solution when  each GBF solves TDSE 

GBF is localized on a scale of LHA and WF 

Thawed Gaussian,   real at

TDSE gives 

variational optional phase 

pj and U(qj)  from

cj from



applications

Accuracy: energy and norm conservation

Output: auto- and cross-correlations, C(t)=<y(0)|y(t)>, and spectra 



Positions of 3 GBFs : the oval size 
represents the GBF localization  

circles = SOFT 

coupled HO model

(a11, a12, a22) = solid, dot-dash, dash

44 GBFs;   * = 57 GBFs; circles = SOFT

110 frozen width

111c  adapt corr

111 adapt uncor

1/0 = adapted/fixed   (q,p,a)



inversion of ammonia model   

Vb=22.5 kJ/mol 

WF energy Vb/3

1D Nb=15-60

WF t=2000 au

2D Nb= 103-269 WF at t=800 au

QTAG(top) and SOFT (bottom)

1D energy levels



tunneling dynamics with semiclassical bath 

model I model II

Bath modes increase the

barrier ~ 15% Nd=1, 20 



(left) Nd = 2: 25 GBFs with four types  {q,p,a} of basis adaptability.  The GBF width a1(t) for {111}  

basis is on the bottom panel; vertical axis is on rhs. (right) {110} basis is used

model I: cross-correlation  functions
single function per bath DOFs 



(a) Cauto with four basis types of 25 GBFs (b) Ccros with fully adaptable {111c}

model I in 2D 
correlated QTAG

(i) more flexible GBFs 
improve accuracy

(ii) and they can be 
stopped

thawed GBFs

for bath DOFs? 



model I
normalization conservation for 2,4,6 dimensions(top)  and  as a function 
of timestep for Nd=6 (bottom) with ‘diagonalize/project’ scheme 

better propagators?



model II  (nonlinear coupling, trajectories ‘do not go’ across the barrier) 

Ccros from QTAG (25 GBFs),  SOFT in full D, and in 1D with effective potential

effective potential 



Nd=20

model II
the color intensity correlates 
with the amplitudes of the 
respective GBFs

time [au]

x 1
[a

u
]

Nd= 1
well-to-well dynamics disappears 
with Nd



model II  single function per bath DOFs  Nd = 20, Nb = 40

(a) Ccros from QTAG, SOFT and effective potentials

(b,c) The spectra compared to CCS, trajectory-guided CI and full basis.

peaks split due 
to bath DOFs



summary

• QTs  define compact WF representations for exact, approximate, 
mixed quantum dynamics

• QT-guided adaptable Gaussians are efficient and compatible with 
semiclassical representation of bath modes

• linear-in-x phase is important, GBF width adaptation is limited by 
LHA (Vij evaluations); issues of stability and (re)expansions

• Need a general criterion to balance stationary and time-dependent 
representations based on broad features of  WF



Thank you!

Bing Gu (UC Irvine)

Matt Dutra

Sachith Wickramasinghe



Propagation using energy eigenstates

Conservation of the norm and energy depends on the basis completeness



Time evolution algorithm: (left) steps of the expansion, or reexpansion, of a wave
function in a basis; (right) time propagation with basis orthogonalization and
transformations (BOT). A simulation begins at the t = 0 label, completes the left
(red) loop, and propagates along the right (black) loop until a reexpansion criterion
is met at which point the (re)expansion branch is again taken or the simulation
completes. See text for the reexpansion criteria.



Approximate Quantum Potential & Force

- Use a small  basis (x,y,…1) to approximate the nonclassical 
momentum

where A=|y|

- Variationally determined  quantum potential: the WF energy is 
conserved

- Linear in x basis is exact for a Gaussian wavepacket

- Mean-field like, resembles Hartree-Fock

- Infinite basis gives exact QM (like full CI)

• Discretize WF in terms of a trajectory ensemble

• Evolve QTs  under the sum of classical and quantum forces 

• Expectation values are simple ensemble averages


