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Chemical reactions are governed by
the dynamics of molecules

Motivation

Ultrafast photochemistry requires a
dynamical, quantum mechanical
treatment

Classical computing cost of exact
simulation scales exponentially
number of degrees of freedom
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Simulation with a quantum system
significantly reduces the cost
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"LVC"

Vibronic coupling Hamiltonians
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Information is represented by quantum bits (qubits)

Universal quantum computing

3

Single-qubit gates rotate the qubit state (superposition)

Multi-qubit gates change target qubit states based on
the states of control qubits (entanglement)

?

??



Time-independent properties

Universal QC for chemistry

Time-dependent simulation
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Nam, Y. et al. npj Quantum Inf. 2020, 6, 33. Hempel, C. et al. Phys. Rev X 2018, 8, 031022. Kandala, A. et al. Nature 2017, 549, 242–246. 
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Kassal, I. et al. Proc. Natl. Acad. Sci. 2008, 105, 18681–18686. Li, Y.; Benjamin, S.C. Phys. Rev. X 2017, 7, 021050. 

Ollitrault, P.J. et al. Phys. Rev. Lett. 2020, 125, 260511. 



Classical: model a complex system with a controllable system

Analog simulation
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Franck-Condon spectravibrational structure

Sparrow, C. et al. Nature 2018, 557, 660–667. 

electronic structure

Arguello-Luengo, J. et al. Nature 2019, 574, 215–218. Huh, J. et al. Nat. Photonics 2015, 9, 615–620. 

Quantum: map a desired Hamiltonian onto a controllable quantum system



Architectures with internal (qudit) and bosonic degrees of freedom

Mixed qudit-boson quantum simulators
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⊗N ⊗M
⊗ electronic → internal

vibrational → bosonic

mapping:



Architectures with internal (qudit) and bosonic degrees of freedom

Mixed qudit-boson quantum simulators

Ion traps
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Circuit quantum electrodynamics (cQED)

⊗N ⊗M

⊗

Blais, A. et al. Nature Phys. 2020, 574, 247–256. 

μ-wave
resonator

Superconducting
qubit

electronic → internal
vibrational → bosonic

mapping:



2D LVC model (pyrazine) on a trapped ion
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energy difference

laser detuning AC Stark shift σz gate MS gate

harmonic tuning coupling



Simulation consists of initialization, evolution and measurement

Steps for a 2D LVC model
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Simulation consists of initialization, evolution and measurement

Steps for a 2D LVC model
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Difference in simulator and system frequencies (kHz, THz) leads to
simulation time scaled by a known factor (fs → ms) 
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Steps for a 2D LVC model
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Difference in simulator and system frequencies (kHz, THz) leads to
simulation time scaled by a known factor (fs → ms) 

Measurement
averaged over
many
"experiments" 
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Simulation consists of initialization, evolution and measurement

Steps for a 2D LVC model
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Difference in simulator and system frequencies (kHz, THz) leads to
simulation time scaled by a known factor (fs → ms) 

Measurement
averaged over
many
"experiments" 
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Including additional states/modes

Going beyond the 2D LVC model

9

Higher-order terms

System-bath interactions

1.

2.

3.



N trapped ions → 3N modes, 2N states
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Lab space is (unfortunately) finite

1. Including additional states/modes
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N trapped ions → 3N modes, 2N states
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Lab space is (unfortunately) finite

1. Including additional states/modes

Suzuki-Trotter expansion

Split terms of the Hamiltonian into multiple
short timesteps

Terms corresponding to different modes
from a single laser source



Exact simulation involves solving a master equation
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2. System-bath interactions

Weak vibrational coupling to an infinite bath with
Linblad superoperator
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Exact simulation involves solving a master equation
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Laser cooling + heating: 

2. System-bath interactions

Weak vibrational coupling to an infinite bath with
Linblad superoperator
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Can also achieve second order terms with
light-matter interactions
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Anharmonicity from engineered potentials

Surface traps

cQED

Stajic, J.  Science 2013, 339, 1163. 

3. Higher-order terms

Dispersive coupling (Qj
2)

Mode mixing (QjQk)

Pedernales, J. S.  Sci. Rep. 2015, 5, 15472. 

Marshall, K.; James, D.F.V.  Appl. Phys. B 2017, 123, 26. 



Time-dependent observables mapped to the internal-bosonic basis

Measuring observables
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Absorption spectra from the autocorrelation function
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Measuring observables
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Absorption spectra from the autocorrelation function
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Conclusions

Vibronic coupling models can be mapped
directly onto MQB simulators
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The model may be extended to more modes/
states, system-bath couplings, other observables

Can be achieved with existing quantum
technology

One-to-one correspondance of internal/bosonic
with electronic/vibrational degrees of freedom

First order terms → common multi-qubit

coupling schemes

MacDonell, R.J. et al. 2020, arXiv:2012.01852 [quant-ph]. 
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Vibronic coupling terms in the interaction picture

Light-matter interactions

S1

First-order terms in the same form as light-matter interactions

σz σx

Lee, P.J. et al. J. Opt. B: Quantum Semiclass. Opt. 2005, 7, S371–S383. 

σz gate:

MS (σx) gate:

ωion

δ

ω0



Terms of the Hamiltonian are applied with respect
to the "base" Hamiltonian

Trotterization in the interaction picture

S2

Additional phase-matching required for multiple terms from a
single laser

Applying interactions in series requires rescaling

qj

pj


