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Polaron-Polariton Dispersion
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Single vs Multilayer Materials in Cavities
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Single vs Multilayer Materials in Cavities

Phonon Fluctuation Synchronization Effect
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Single Layer Vs Multi-Layer with 3D Cavity-Material Architecture
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Mechanistic Principles of Exciton-Polariton Relaxation
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Mechanistic Principles of Exciton-Polariton Relaxation

20
UP - LP @ Simulation Dark — LP ()
20+ ( 40
Z 2 101 ¥ 20-
o, Simulation , ,
o0 ® ® UP = Dark Simulation ~
) | . ) ® o° o0 00%,*
1 10 20 Ul 10 20 2 10 20
Number of Layers Number of Layers Number of Layers
Ky (N;) < f(N Kyp(N;) o< (N, —1D)f(N
UL( L) f(NL) UD( L) (N )f(NL) Kp; (N;) « f(Np)
NL
1 -
FN) = 53 ) sin (ko - Yim)
m

Haines T, Manjalingal T, Blackham, Rahmanian, Mandal, arXiv (2026)
s



Direct Transition from Upper to Lower Polariton
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Moiré Pattern
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Band structure modification
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Tilted Material in an Optical Cavity




Light-Matter Moiré Eftect
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Coherent Frequency Conversion
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Coherent Frequency Conversion
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Summary

O Multilayer material-cavity configurations give rise to a phonon-fluctuation synchronization effect

O This synchronization leads to enhanced quantum coherence, accompanied by more robust polaritonic transport
properties.

O The relaxation pathway from the upper to the lower polariton 1s strongly modified by the
presence of dark layers, resulting in a two-step relaxation mechanism:

O Step I: A momentum-conserving direct transition (1 Step II: Phonon-induced Frohlich-type
intraband scattering

0 When the material is tilted inside the cavity, a ight-matter moiré effect emerges. However, increasing the material
thickness causes this effect to fade away.

O Finally, we derive simple analytical expressions that directly relate a material’s finite thickness to its relaxation
dynamics and coherence properties.
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