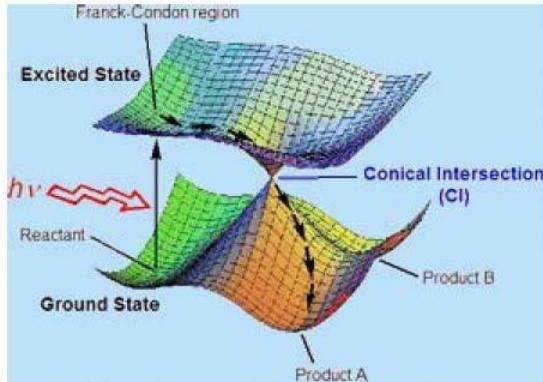
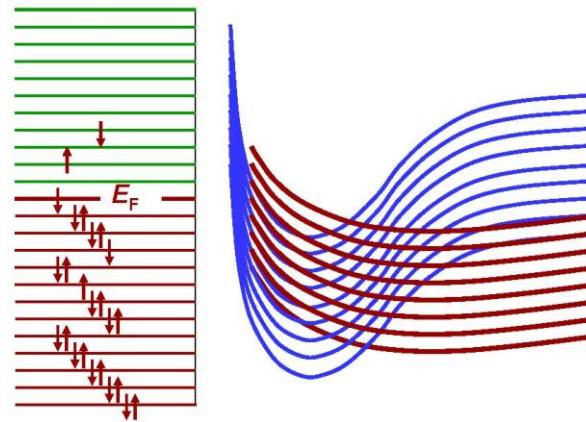
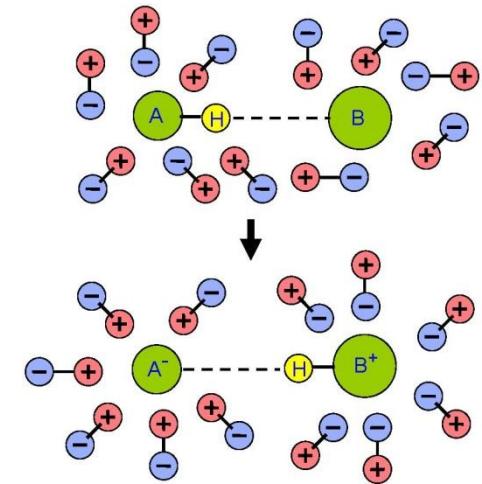
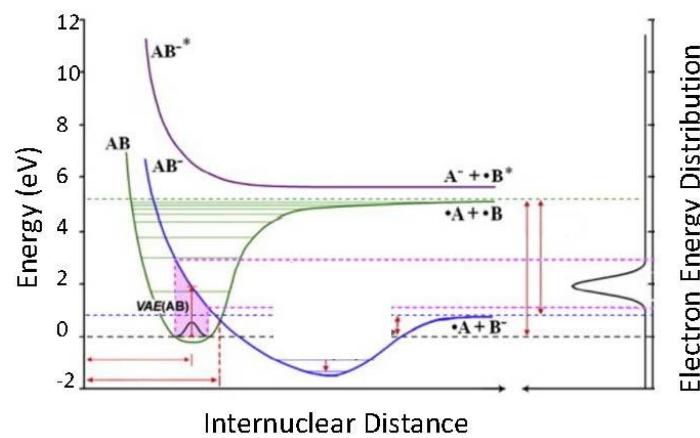
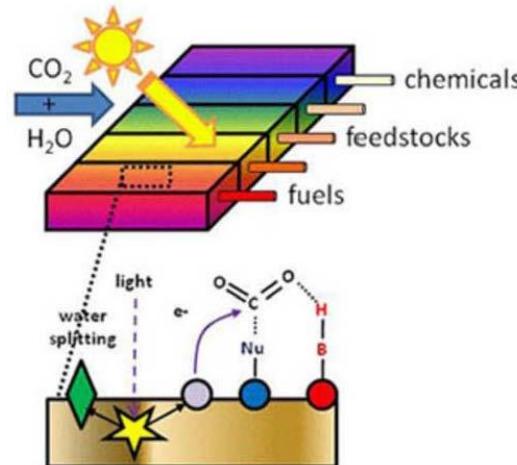
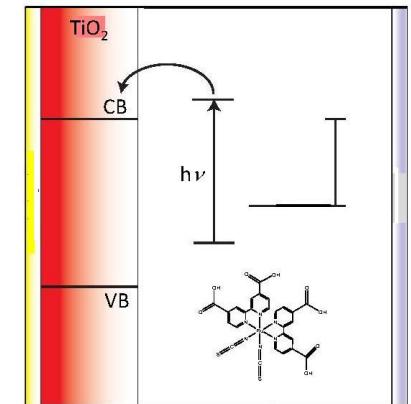


Adventures with Surface Hopping



Adventures with Surface Hopping

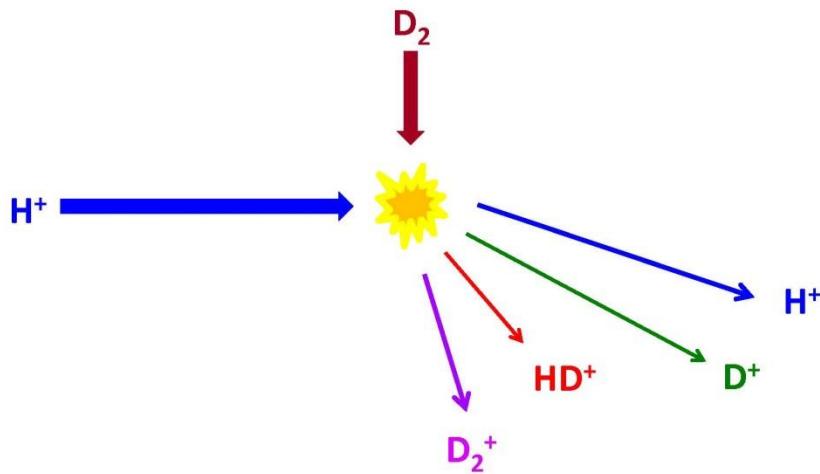
A historical view of my role in some of the origins and developments of surface hopping

This will not be a scholarly review:
I will omit many important contributions by others

Molecular Beam Experiments of the Reaction of H^+ with D_2

Collaboration with Zdenek Herman, Richard Wolfgang, ...

1969 Univ Colorado Boulder



*Detect the angular and
velocity distributions of ions*



Theory: How hard can it be?

H_3^+ : 3 nuclei, 2 electrons

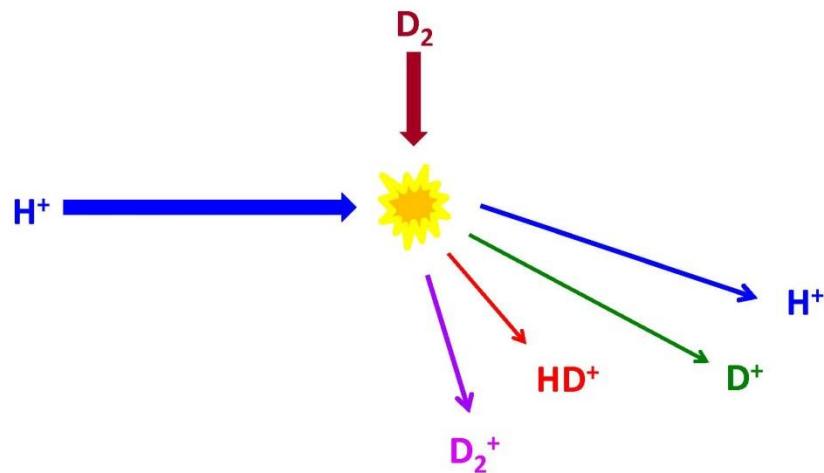
simplest chemical reaction ?

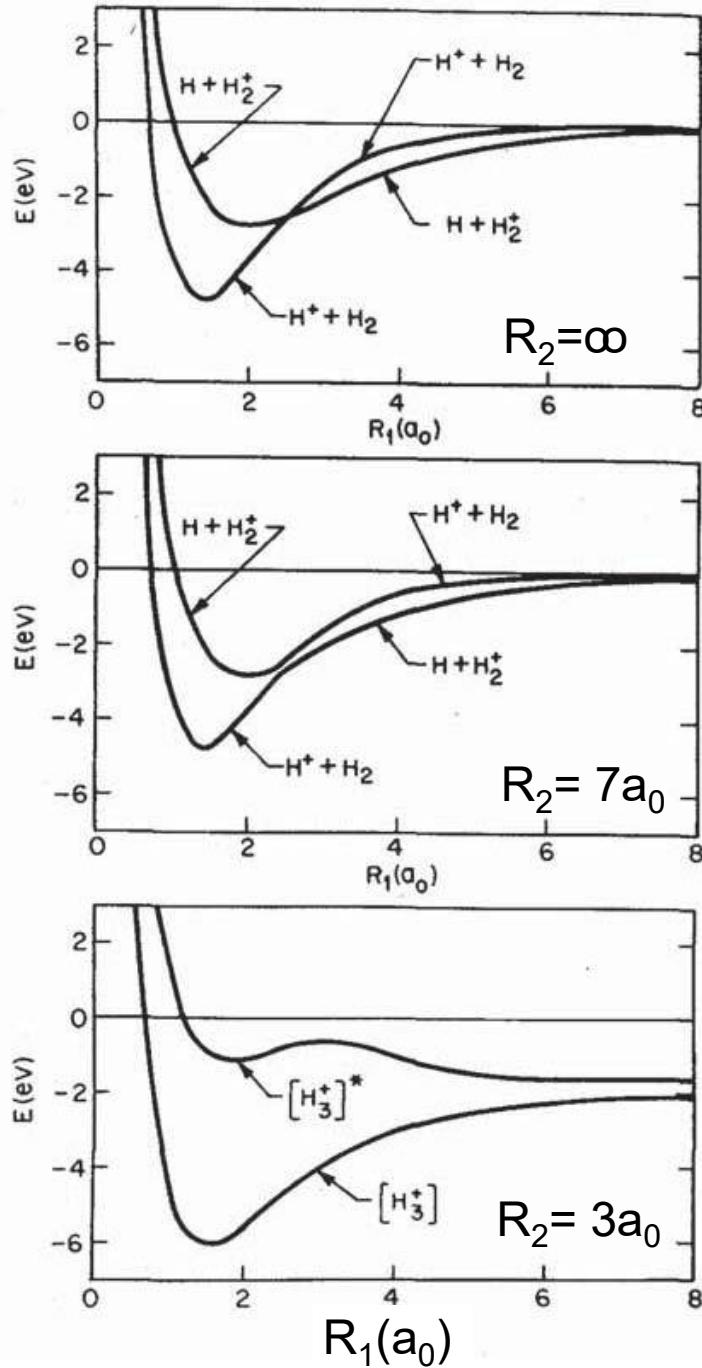
Theory: How hard can it be?

H_3^+ : 3 nuclei, 2 electrons

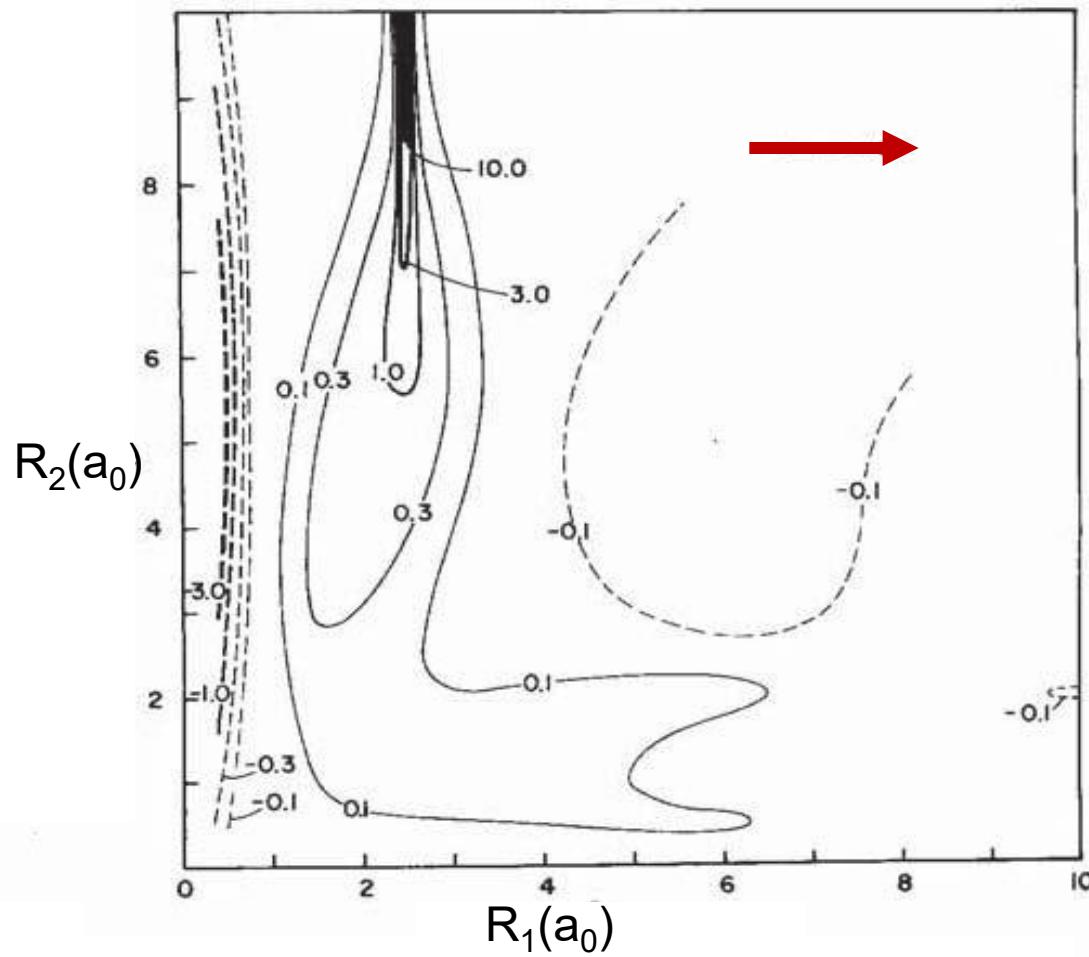
simplest chemical reaction ?

However: 2 potential energy surfaces !





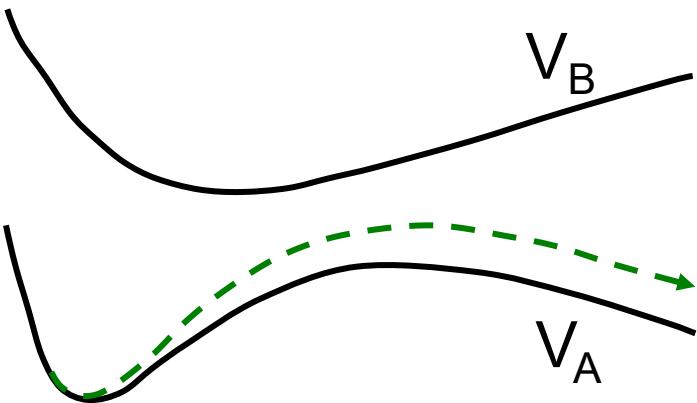
Compute Potential Energy Surfaces
and Nonadiabatic Coupling Vectors
Semiempirical Diatomics in Molecules



Nonadiabatic coupling vector

January 14, 2026

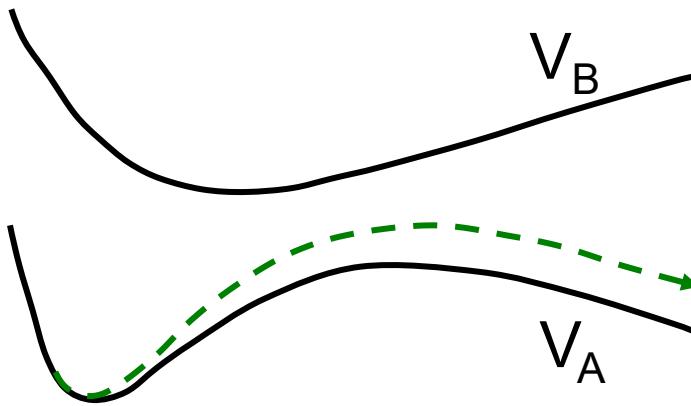
MIXED QUANTUM-CLASSICAL STRATEGIES FOR NONADIABATIC DYNAMICS



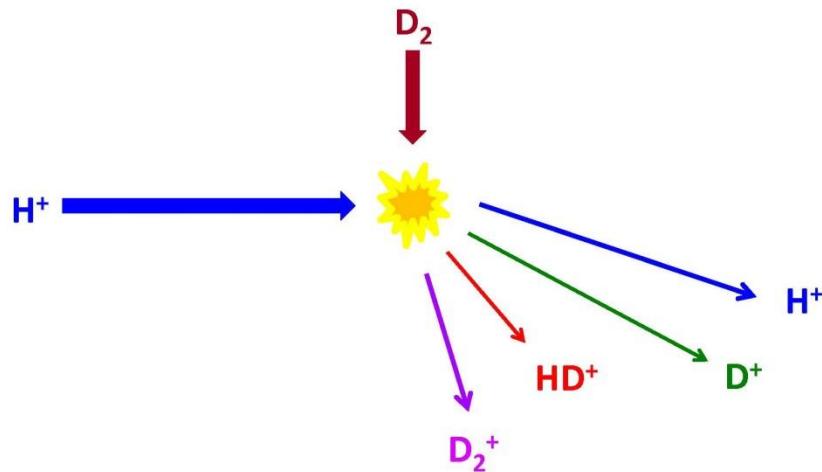
Ehrenfest
(self-consistent field)

e.g., A. D. McLachlan, *Mol. Phys.* 1964

MIXED QUANTUM-CLASSICAL STRATEGIES FOR NONADIABATIC DYNAMICS

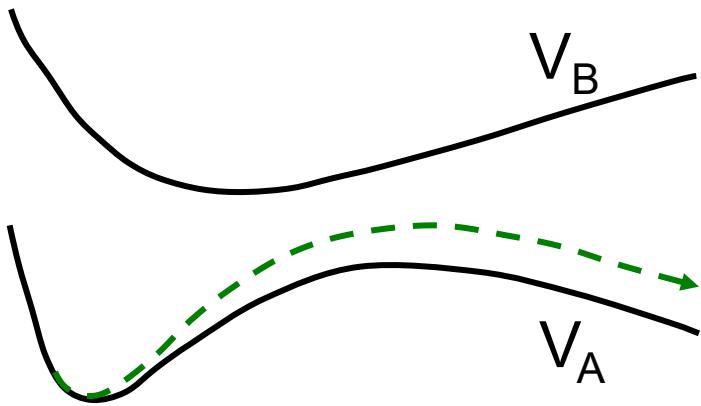


Ehrenfest
(self-consistent field)

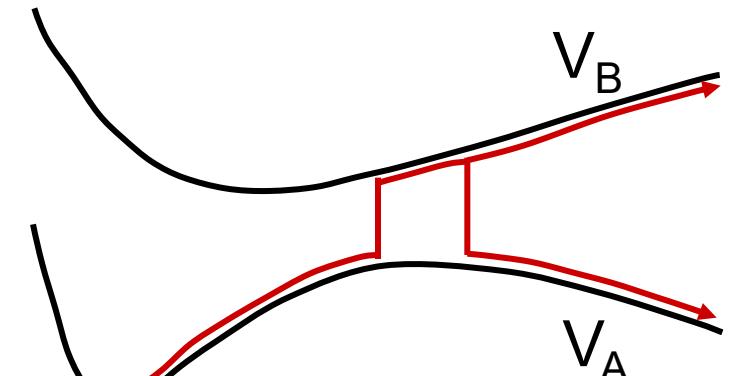


e.g., A. D. McLachlan, *Mol. Phys.* 1964

MIXED QUANTUM-CLASSICAL STRATEGIES FOR NONADIABATIC DYNAMICS



Ehrenfest
(self-consistent field)



Trajectory Surface-Hopping

motion on individual
potential energy surfaces

Surface Hopping (1971 Version)

1] $\ddot{M} \dot{R}(t) = -\nabla_R E_k$, i.e., classical motion on a single adiabatic p.e.s.

Surface Hopping (1971 Version)

- 1] $\ddot{M} \dot{\vec{R}}(t) = -\nabla_{\vec{R}} E_k$, i.e., classical motion on a single adiabatic p.e.s.
- 2] Electronic amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$

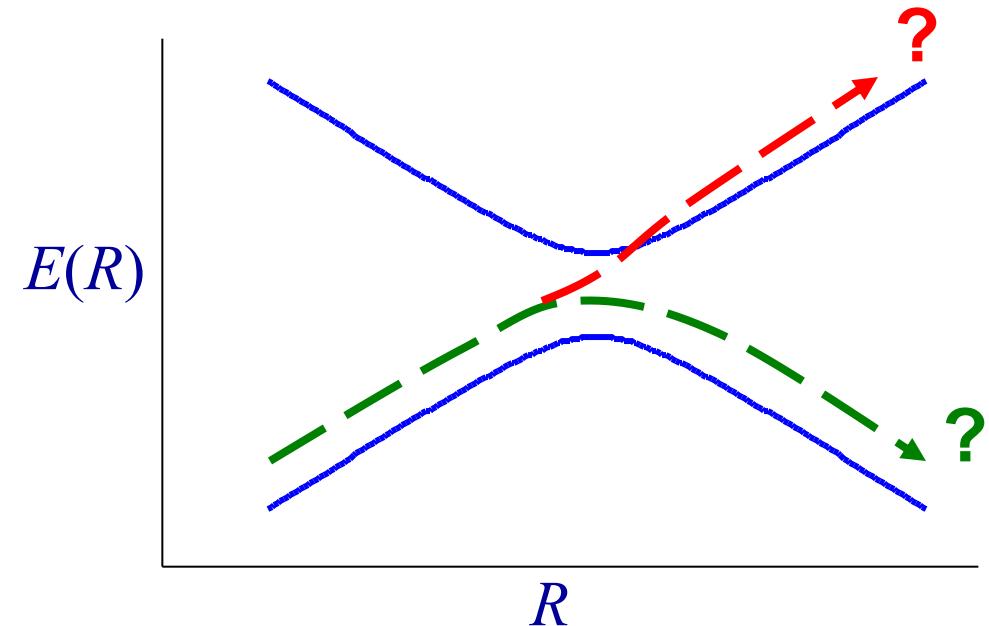
Approximate $|c_k|^2$ by Landau-Zener formula

Landau-Zener Approximation: 1932

2 x 2 Hamiltonian matrix

Assumptions:

1. H_{11} and H_{22} linear
2. H_{12} constant
3. Velocity constant



$$P_{nonad} \approx \exp \left[\frac{-2\pi H_{12}^2}{\hbar \dot{R} |\partial(H_{11} - H_{22})/\partial R|} \right]$$

Surface Hopping (1971 Version)

- 1] $\ddot{M} \dot{\vec{R}}(t) = -\nabla_{\vec{R}} E_k$, i.e., classical motion on a single adiabatic p.e.s.
- 2] Electronic amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
Approximate $|c_k|^2$ by Landau-Zener formula
- 3] Select electronic state by random number according to $|c_k|^2$

Hops occur only at crossing points

Surface Hopping (1971 Version)

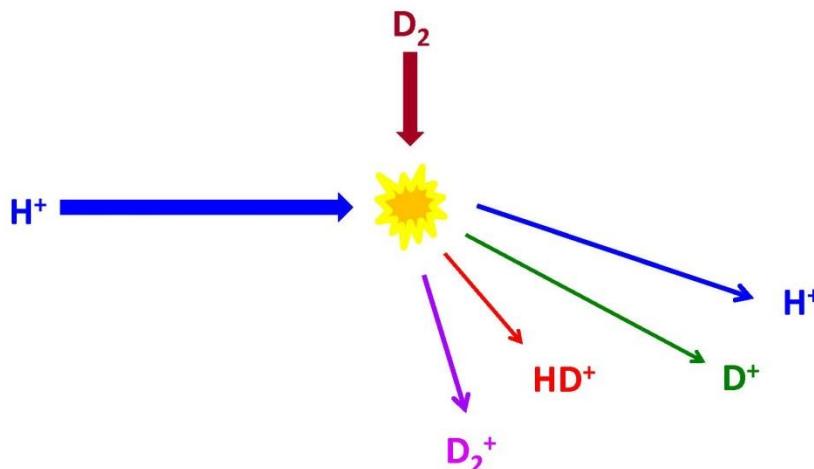
- 1] $\ddot{M} \dot{\vec{R}}(t) = -\nabla_{\vec{R}} E_k$, i.e., classical motion on a single adiabatic p.e.s.
- 2] Electronic amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
Approximate $|c_k|^2$ by Landau-Zener formula
- 3] Select electronic state by random number according to $|c_k|^2$
Hops occur only at crossing points
- 4] Scale momentum in *direction of coupling vector* to conserve energy

P. Pechukas, Phys. Rev., 1969

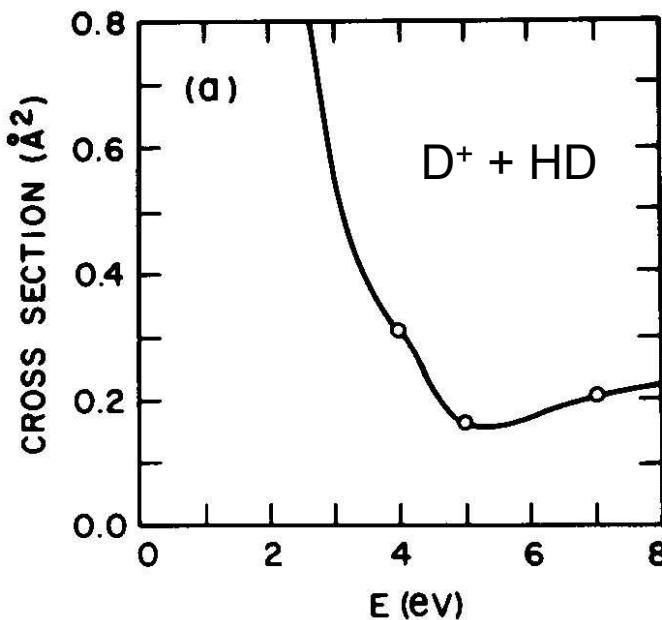
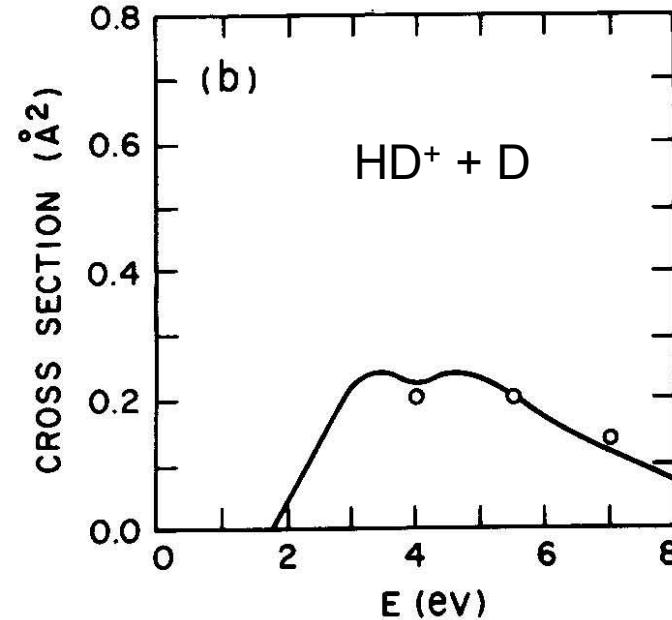
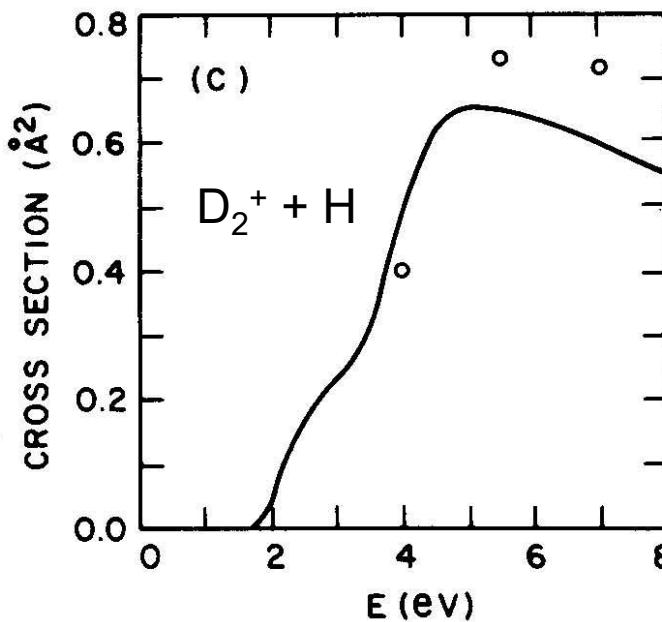
Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H^+ with D_2

1971 with graduate student Richard Preston

Used Brookhaven National Labs CDC 6600 supercomputer



“It takes a laser physicist to be a farmer” Richard Preston, 2010

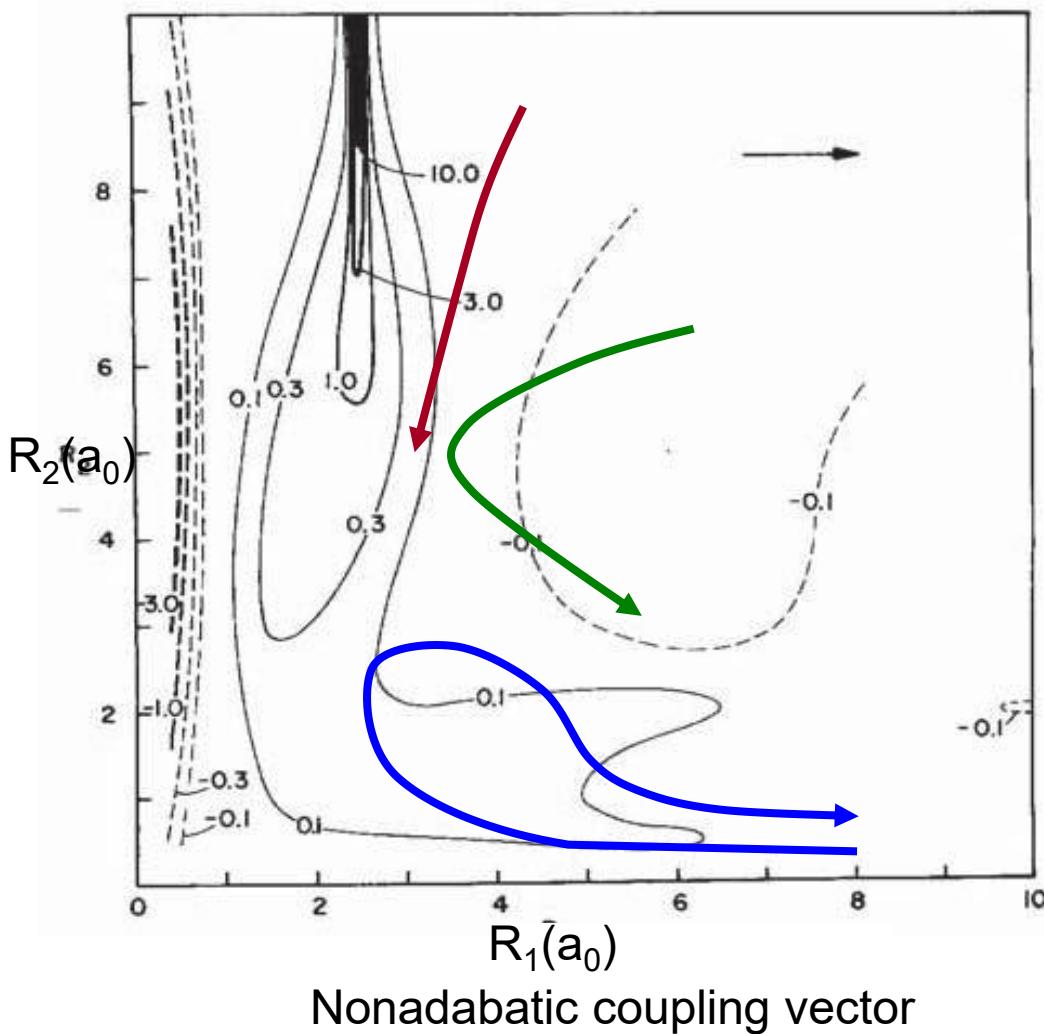


Absolute cross sections for the reaction of H^+ with D_2 as a function of incident energy

Points: surface hopping,
Tully - Preston, 1971

Solid curves: experiment,
Ochs - Teloy, 1974

Fast Forward to 1990, Bell Labs:



Turning points

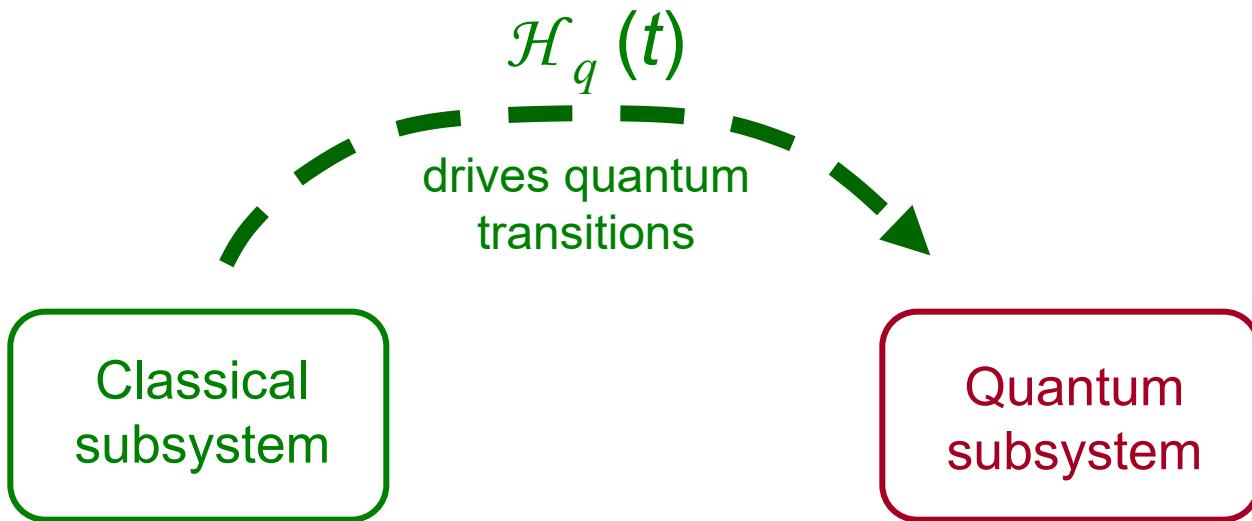
No distinct crossing points

Nearly parallel surfaces

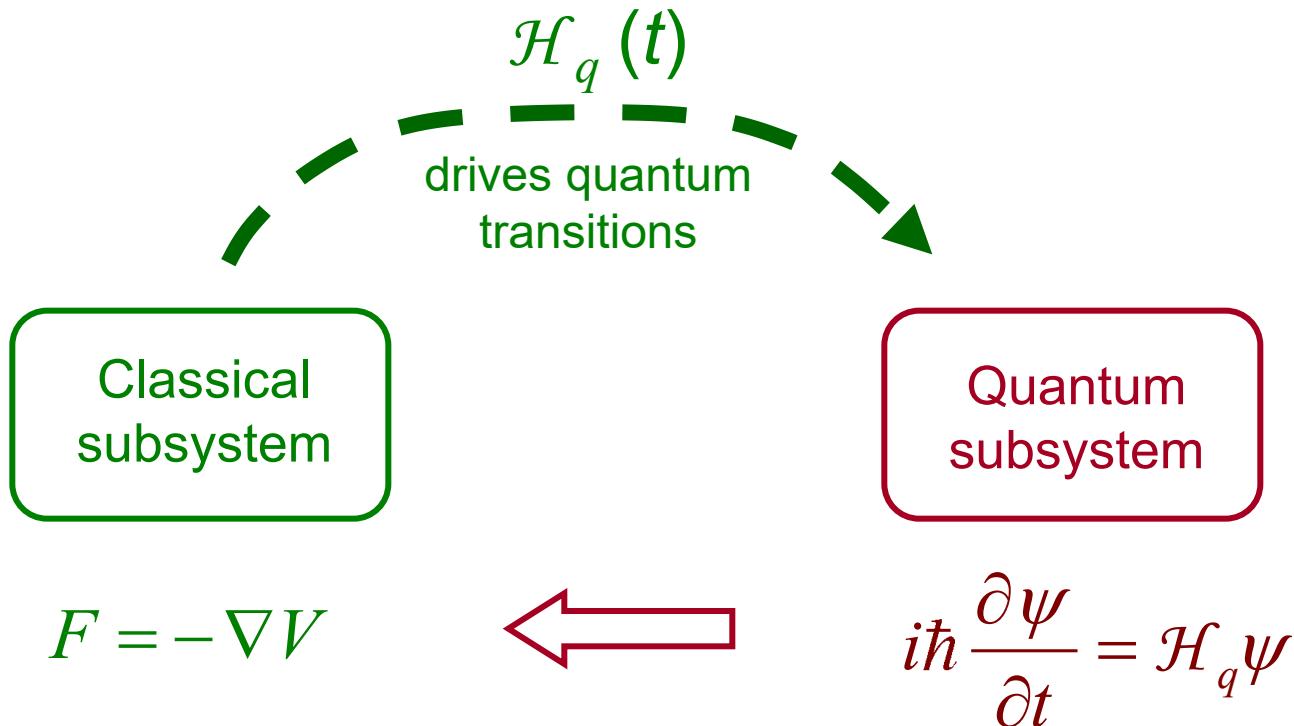
Many electronic states

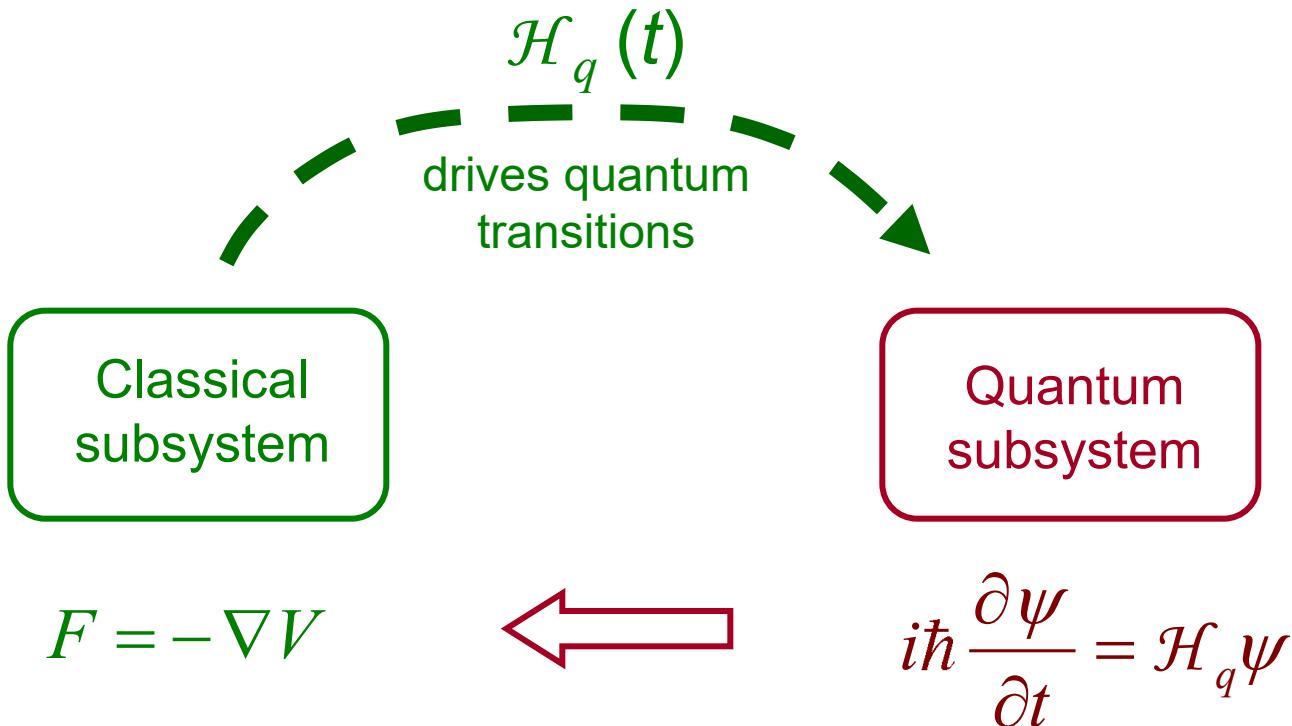
Broad coupling region

→ *Need to go beyond
1971 assumption of hopping
only at crossing points*



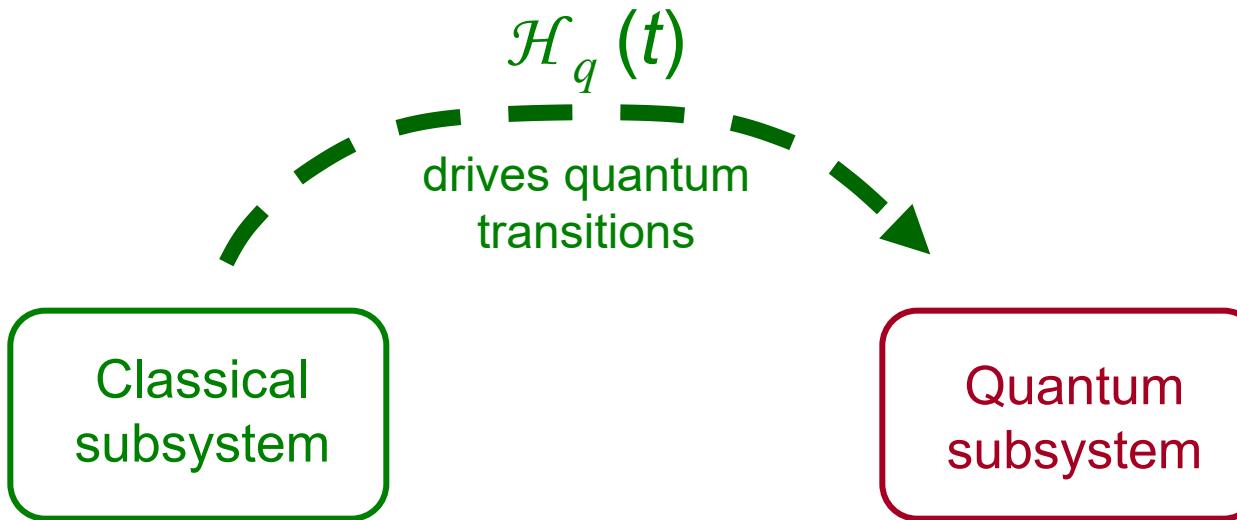
$$F = -\nabla V$$





Key: quantum force: “*back-reaction*”

How do quantum transitions effect classical path?



$$F = -\nabla V$$

$$i\hbar \frac{\partial \psi}{\partial t} = \mathcal{H}_q \psi$$

Key: quantum force: “*back-reaction*”

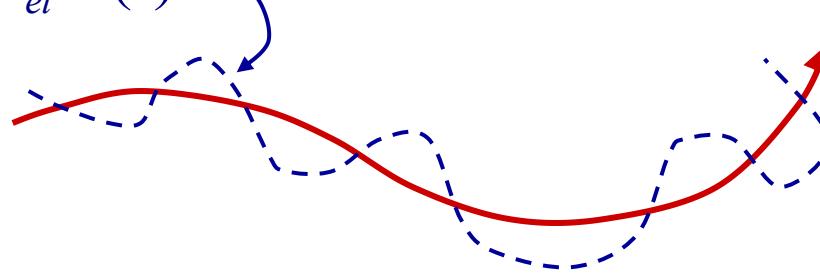
How do quantum transitions effect classical path?

How can we treat back-reaction more accurately, and yet retain the feature that trajectories end up in distinct states rather than mixtures?

Surface Hopping (1990 Version)

- 1] $\ddot{M} \vec{R}(t) = -\nabla_{\vec{R}} \mathcal{E}_k$, i.e., motion on a single adiabatic p.e.s.
- 2] Quantum amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$

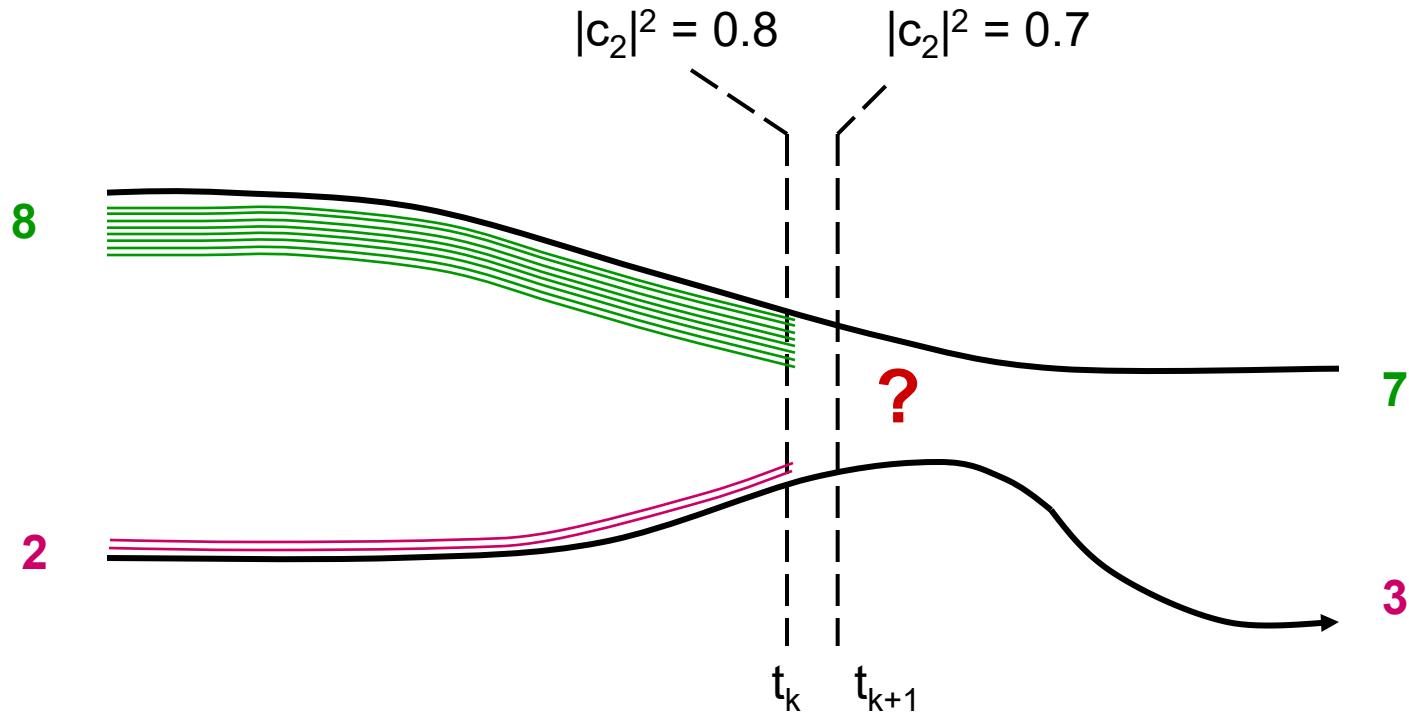
$$i\hbar \frac{\partial \Phi(t)}{\partial t} = \mathcal{H}_{el} \Phi(t)$$



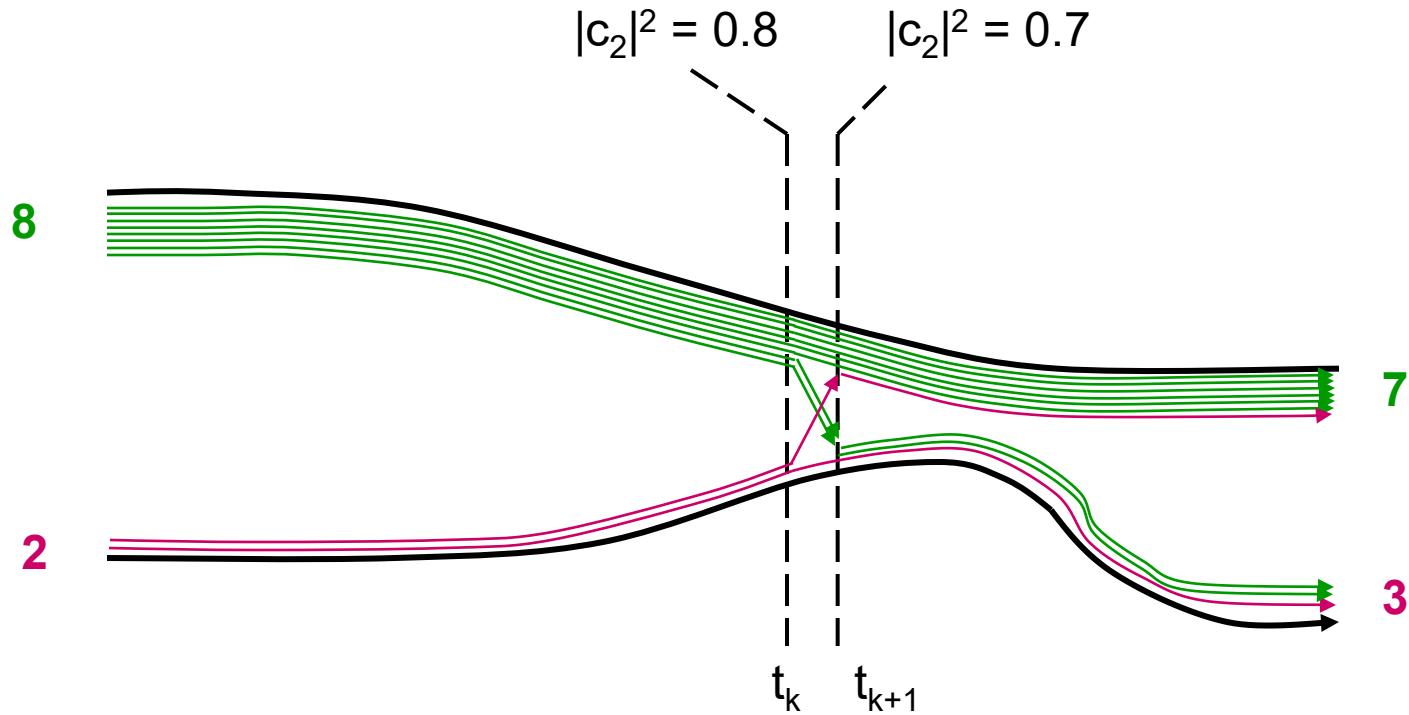
Surface Hopping (1990 Version)

- 1] $\ddot{M} \vec{R}(t) = -\nabla_{\vec{R}} \mathcal{E}_k$, i.e., motion on a single adiabatic p.e.s.
- 2] Quantum amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
- 3] Stochastic “hops” between states so that avg probability = $|c_k(t)|^2$
“fewest switches”

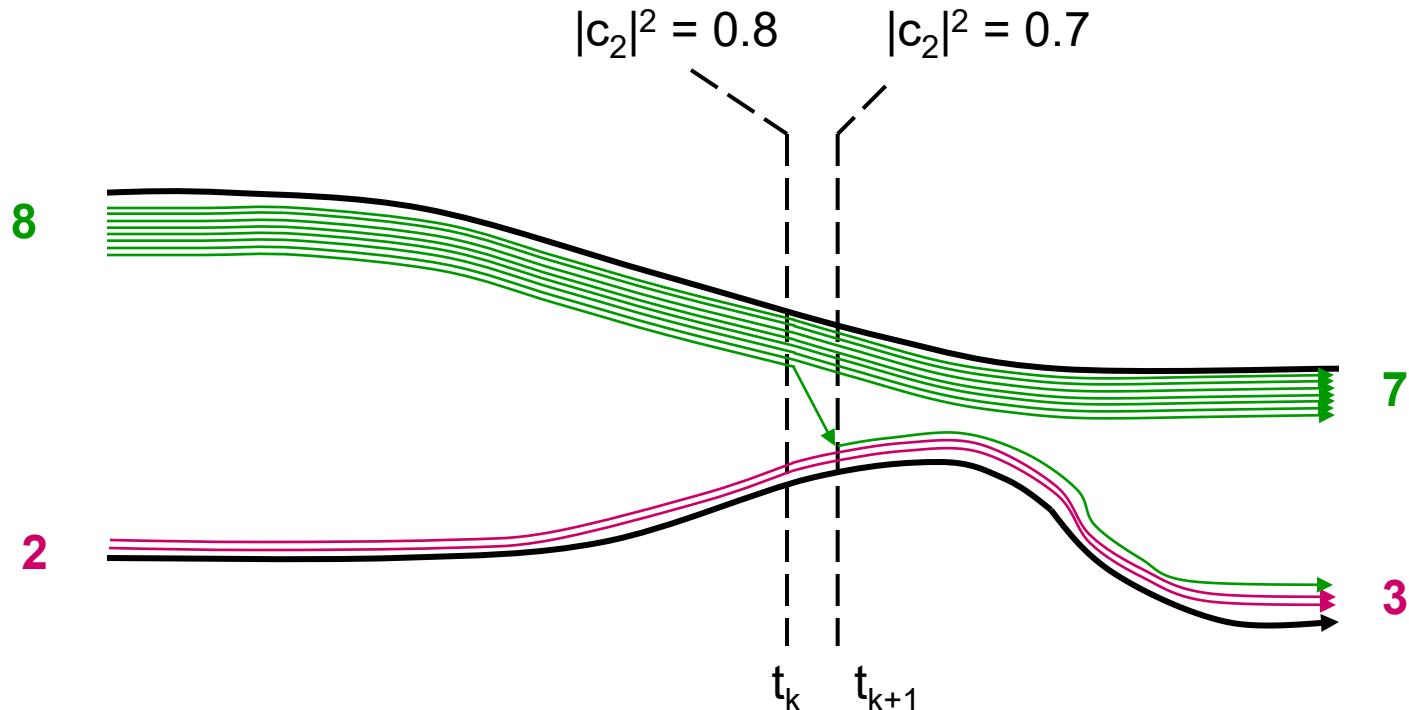
Stochastic *Fewest Switches* algorithm (2-state):



Stochastic *Fewest Switches* algorithm (2-state):



Stochastic *Fewest Switches* algorithm (2-state):



$$P_{2 \rightarrow 1} = \begin{cases} \frac{|c_2(k)|^2 - |c_2(k+1)|^2}{|c_2(k)|^2}, & |c_2(k)|^2 > |c_2(k+1)|^2 \\ 0, & |c_2(k)|^2 \leq |c_2(k+1)|^2 \end{cases}$$

Surface Hopping (1990 Version)

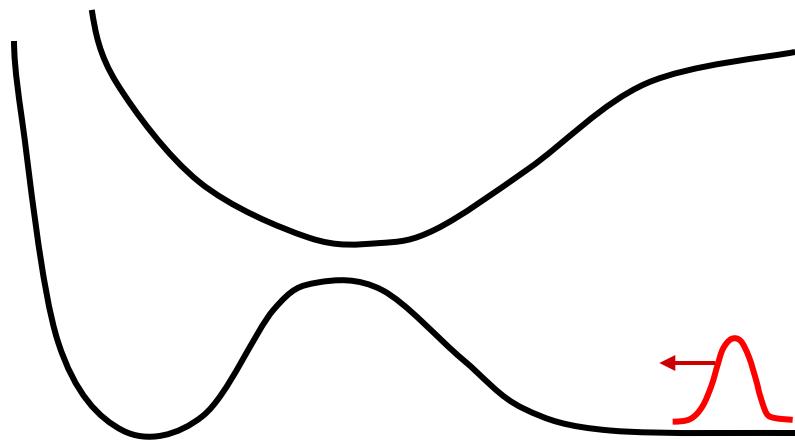
- 1] $\ddot{M} \vec{R}(t) = -\nabla_{\vec{R}} \mathcal{E}_k$, i.e., motion on a single adiabatic p.e.s.
- 2] Quantum amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
- 3] Stochastic “hops” between states so that avg probability = $|c_k(t)|^2$
- 4] Scale momentum in direction of coupling vector to conserve energy

“Pechukas Force”

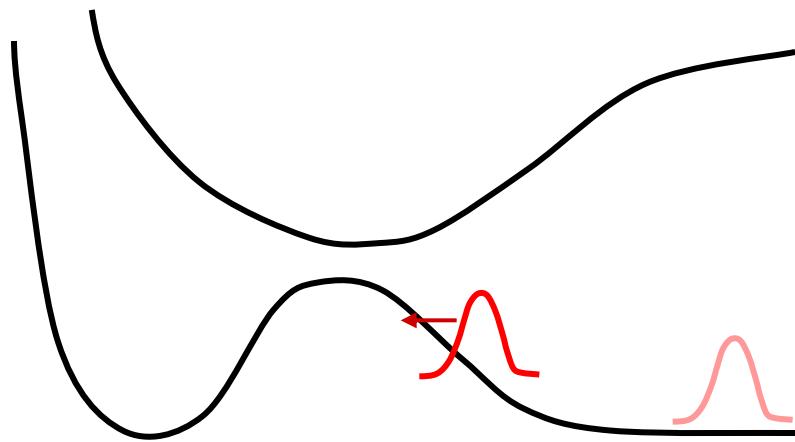
Surface Hopping (1990 Version)

- 1] $\ddot{M} \vec{R}(t) = -\nabla_{\vec{R}} \mathcal{E}_k$, i.e., motion on a single adiabatic p.e.s.
- 2] Quantum amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
- 3] Stochastic “hops” between states so that avg probability = $|c_k(t)|^2$
- 4] Scale momentum in direction of coupling vector to conserve energy
- 5] Include decoherence

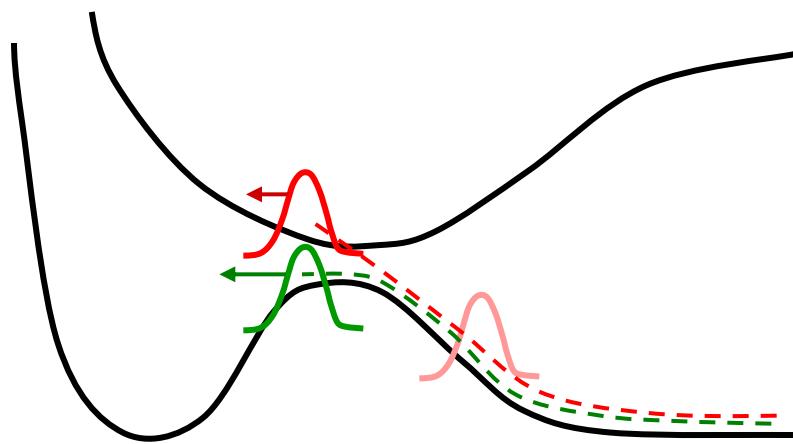
Decoherence



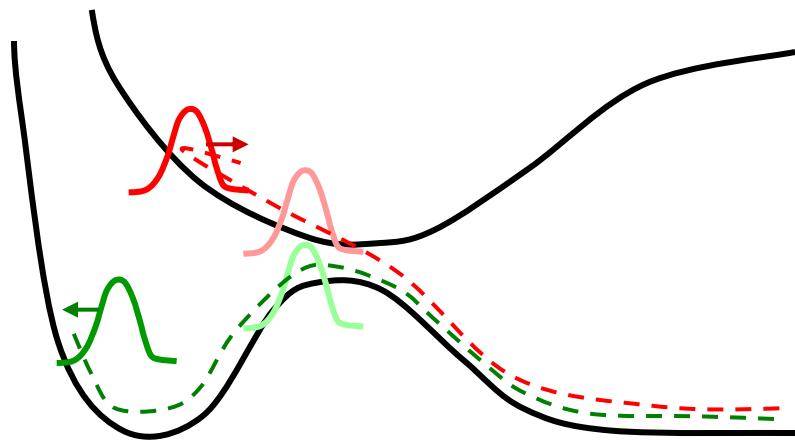
Decoherence



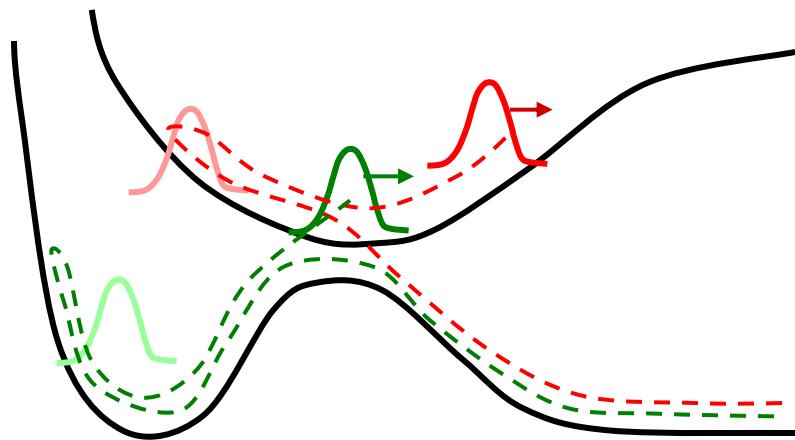
Decoherence



Decoherence



Decoherence



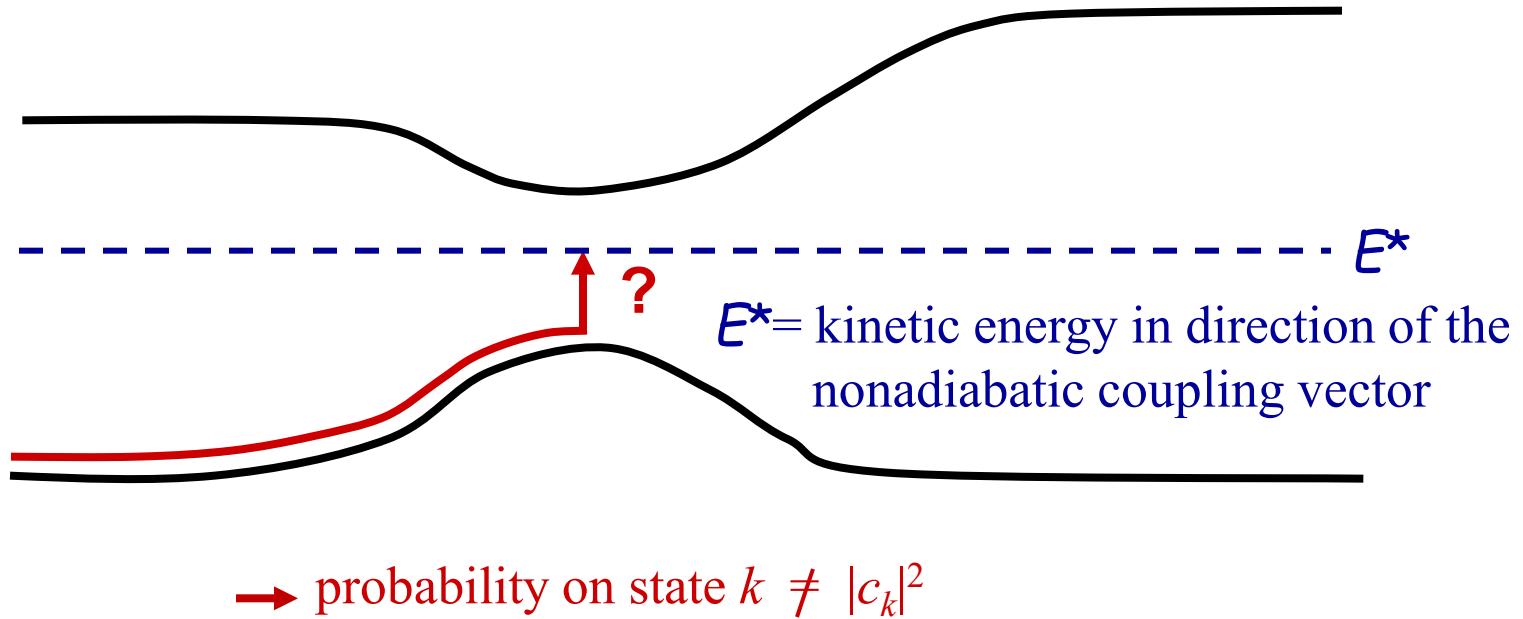
Surface Hopping (1990 Version)

- 1] $\ddot{M} \vec{R}(t) = -\nabla_{\vec{R}} \mathcal{E}_k$, i.e., motion on a single adiabatic p.e.s.
- 2] Quantum amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
- 3] Stochastic “hops” between states so that avg probability = $|c_k(t)|^2$
- 4] Scale momentum in direction of coupling vector to conserve energy
- 5] Include decoherence
- 6] Frustrated Hops

Algorithm calls for a hop but there is insufficient energy in the degree of freedom in the direction of the nonadiabatic coupling vector

Frustrated Hops

Algorithm calls for a hop but there is insufficient energy in the degree of freedom in the direction of the nonadiabatic coupling vector



Critical element of Surface Hopping: Branching probabilities are determined not by $|c_k|^2$, but by the fraction of trajectories on each state.

Frustrated Hops and Detailed Balance

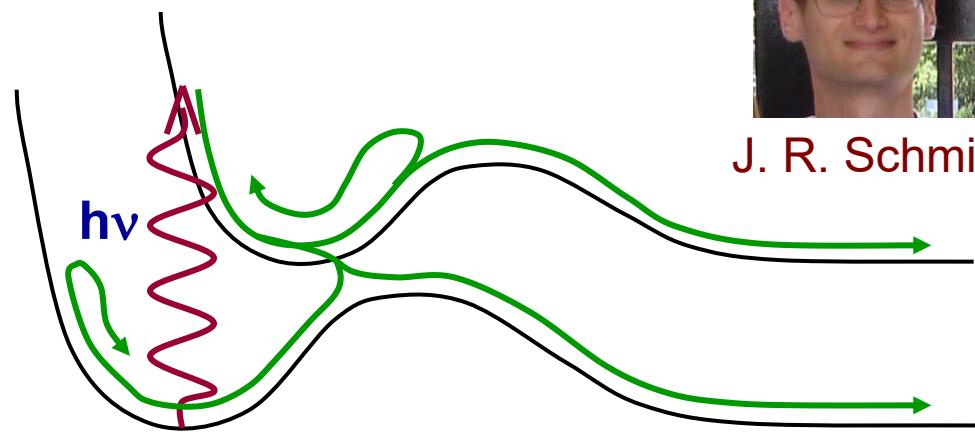
Detailed Balance:

$$\mathcal{N}_1 P_{1 \rightarrow 2} = \mathcal{N}_2 P_{2 \rightarrow 1} \rightarrow \text{Equilibrium}$$

Priya Parandekar

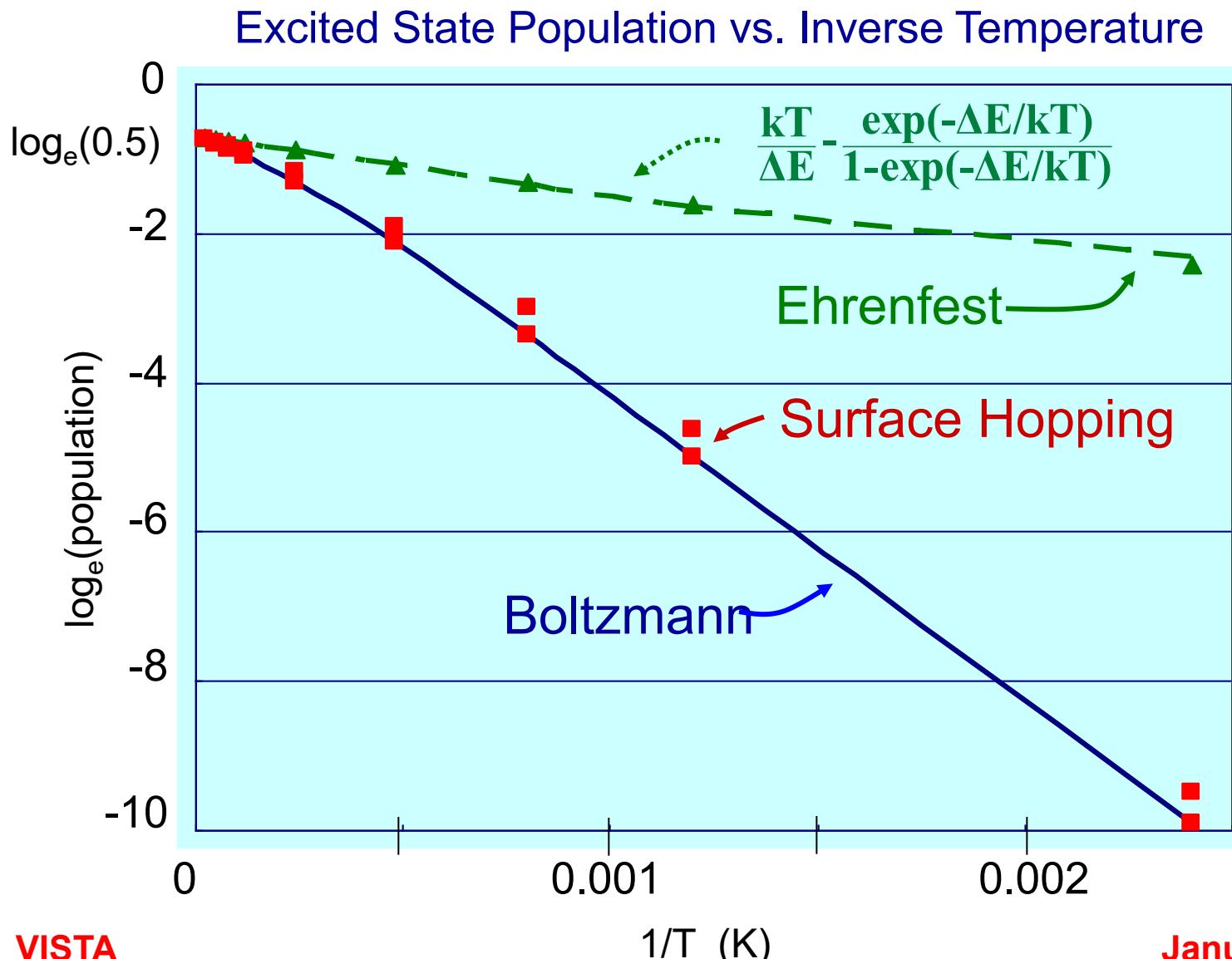
J. R. Schmidt

- Multiple Transitions
- Relaxation Processes
- Infrequent events
- Condensed Phases
- *Long Timescales*



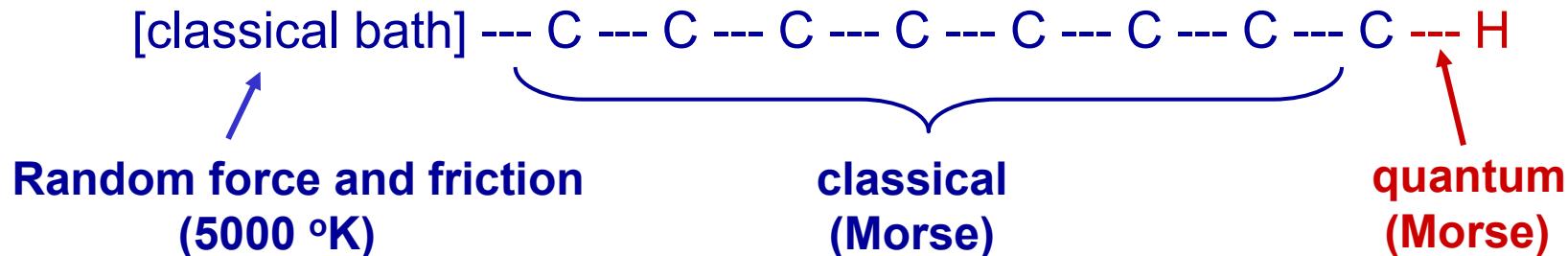
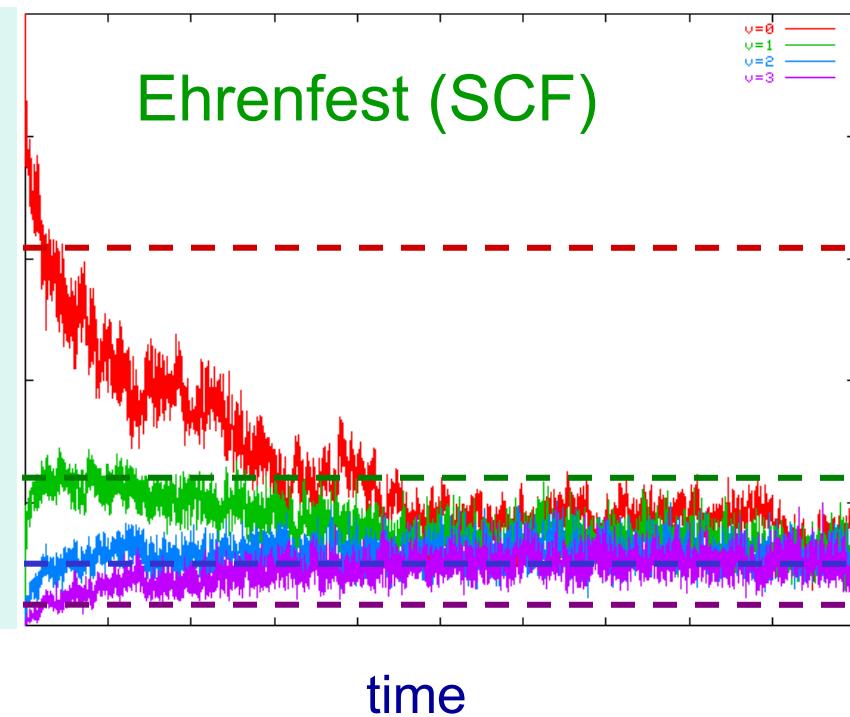
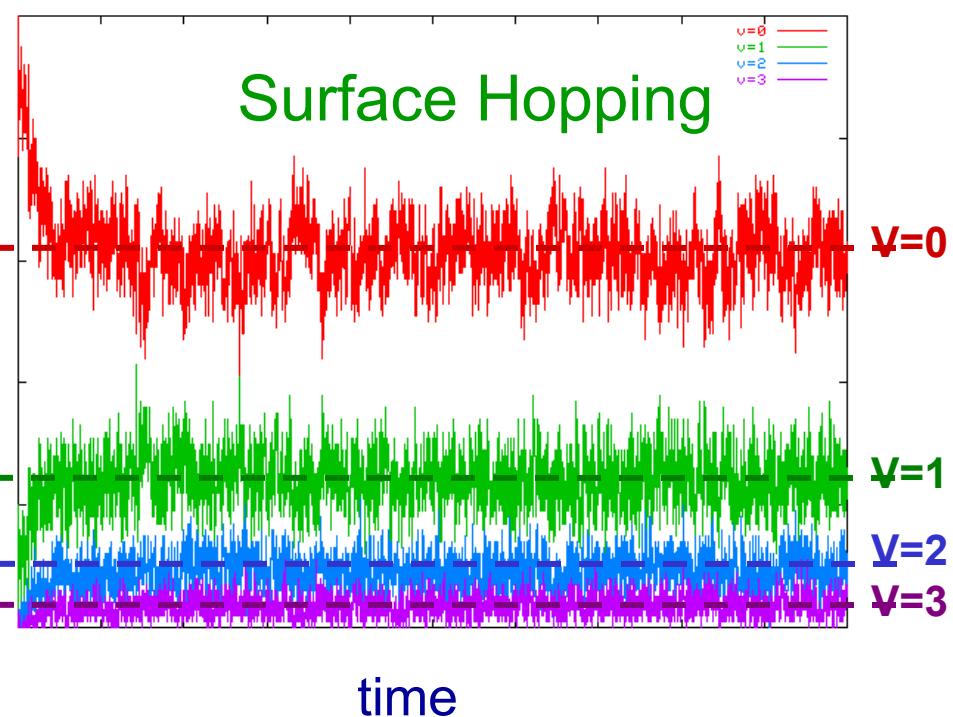
e.g., nonradiative transition
vs. reaction on excited state

2-Electronic State Model $\Delta E = 34.6 \text{ kJ/mole}$



Many Quantum States

2005 Priya Parandekar



Surface Hopping (1990 Version)

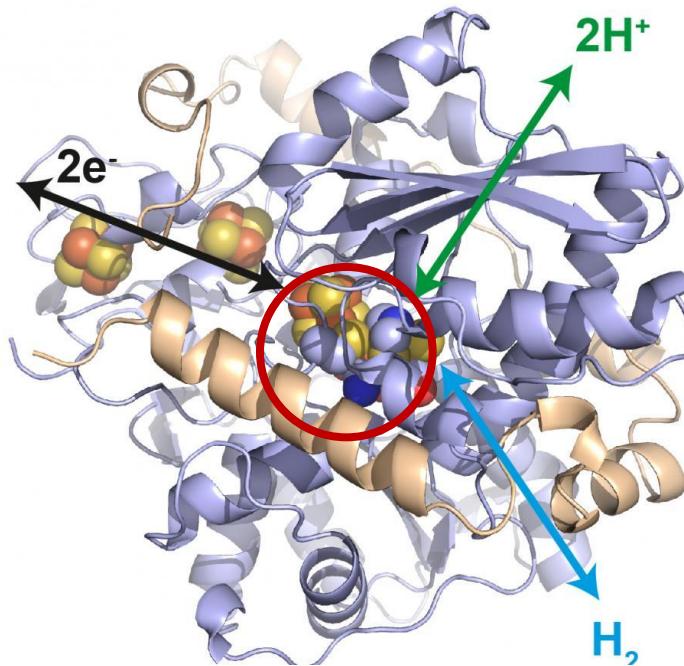
- 1] $\ddot{M} \vec{R}(t) = -\nabla_{\vec{R}} \mathcal{E}_k$, i.e., motion on a single adiabatic p.e.s.
- 2] Quantum amplitudes along path: $dc_j/dt = -\frac{i}{\hbar} V_{jj} c_j - \dot{\vec{R}} \cdot \sum_i \langle \varphi_j | \nabla_{\vec{R}} \varphi_i \rangle c_i$
- 3] Stochastic “hops” between states so that avg probability = $|c_k(t)|^2$
- 4] Scale momentum in direction of coupling vector to conserve energy
- 5] Include decoherence
- 6] Frustrated Hops
Algorithm calls for a hop but there is insufficient energy in the degree of freedom in the direction of the nonadiabatic coupling vector

Treat Nuclear Motion by Quantum Mechanics:

- tunneling
- zero-point motion
- quantized energy levels

Prohibitive for large number of nuclei

Compromise strategy: a few quantum nuclei, the rest classical

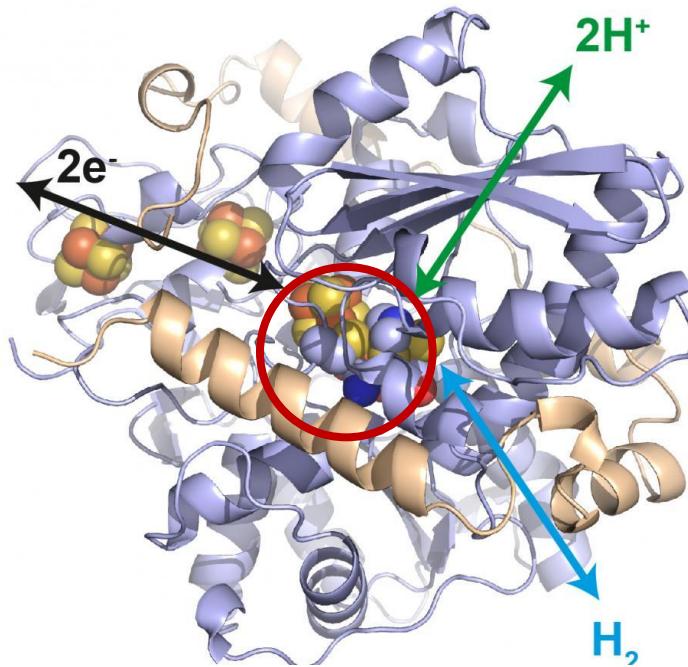


Treat Nuclear Motion by Quantum Mechanics:

- tunneling
- zero-point motion
- quantized energy levels

Prohibitive for large number of nuclei

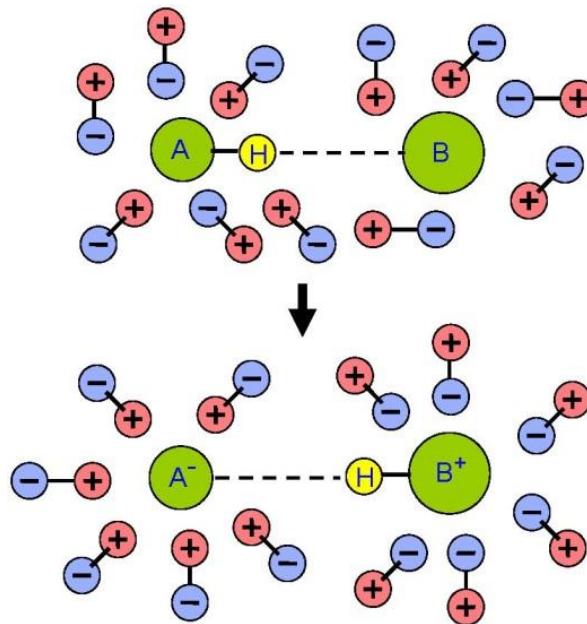
Compromise strategy: a few quantum nuclei, the rest classical



However:
*justification of the
Born-Oppenheimer
approximation ???*

Mixed Quantum-Classical Nuclear Motion

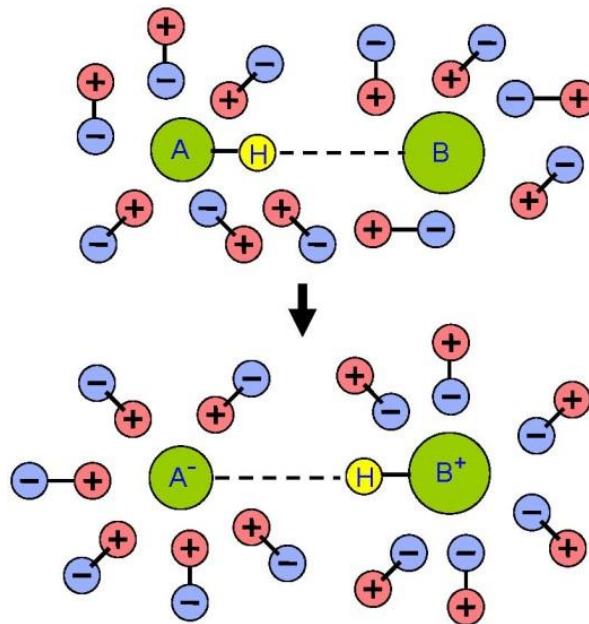
Sharon Hammes-Schiffer and JCT, *J. Chem. Phys.* **101**, 4657 (1994)



Quantum Effects:
Zero-Point Energy
Quantized Energy Levels
Tunneling

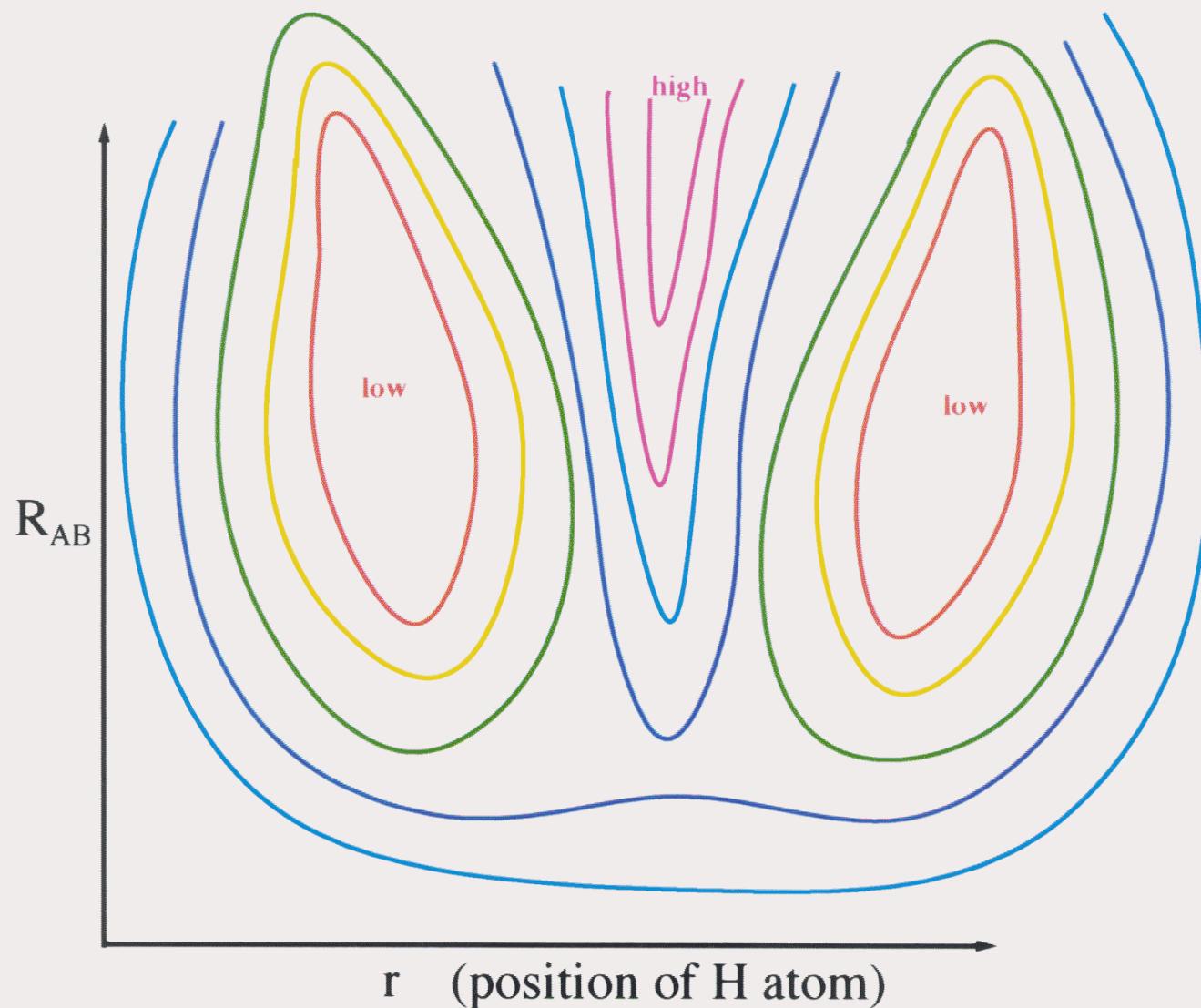
Mixed Quantum-Classical Nuclear Motion

Sharon Hammes-Schiffer and JCT, *J. Chem. Phys.* **101**, 4657 (1994)

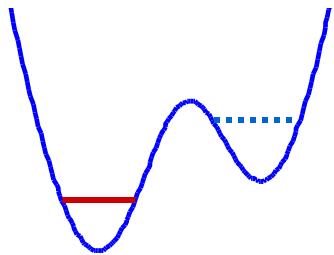


Quantum Effects:
Zero-Point Energy
Quantized Energy Levels
Tunneling

CONTOUR PLOT OF FREE ENERGY

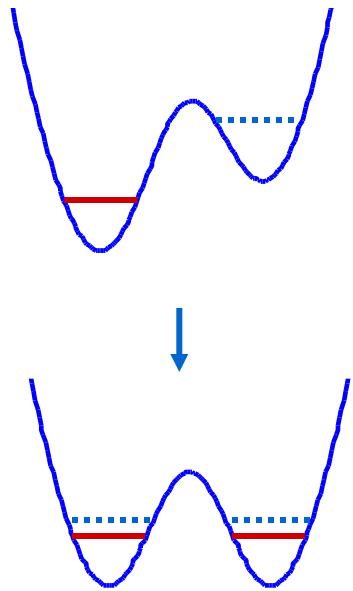
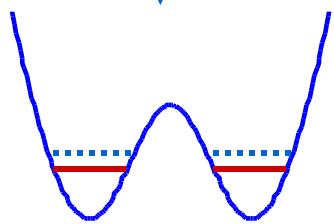


Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)



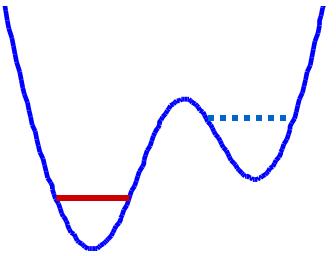
Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)

Solvent
Fluctuation

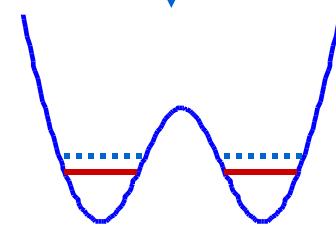


Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)

Solvent
Fluctuation

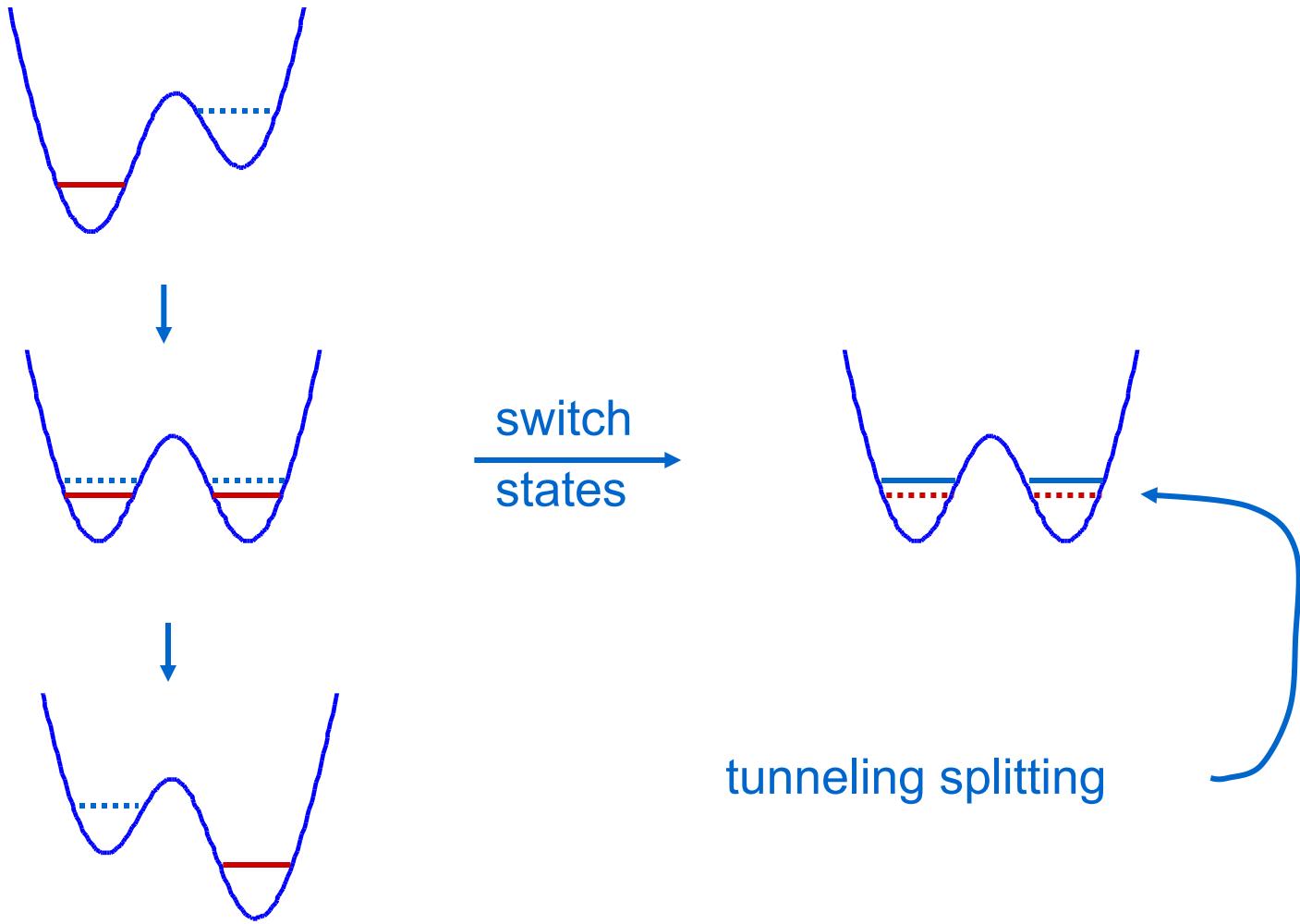


Solvent
Fluctuation



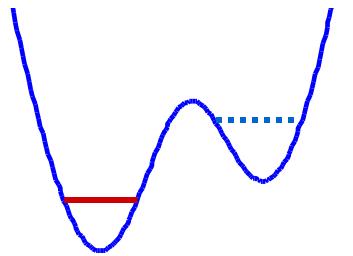
Adiabatic \rightarrow Reaction

Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)

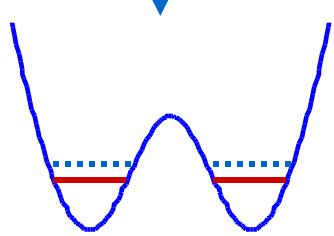
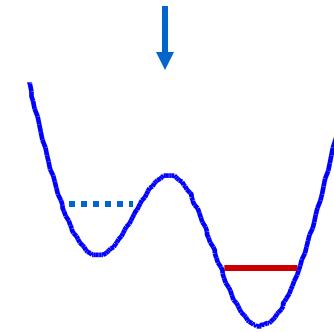


Adiabatic → Reaction

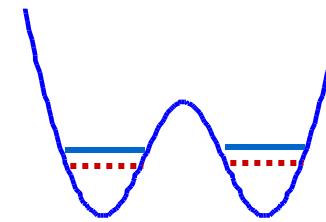
Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)



switch
states



Adiabatic → Reaction

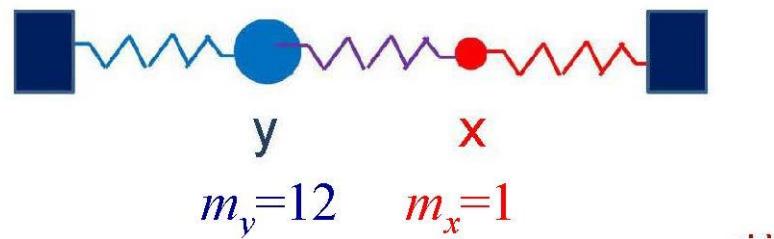


Nonadiabatic → No Reaction

Mixed Quantum-Classical Nuclear Motion

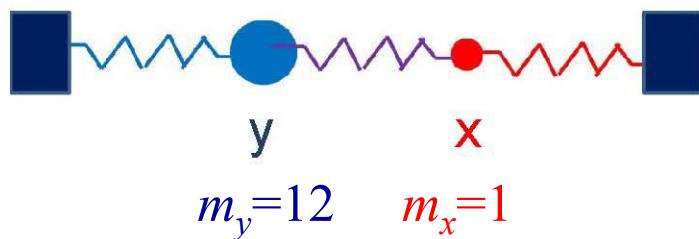
Vibrational Spectra ? JCT, *J. Chem. Phys.* 2023

Simple 2 atom linear model

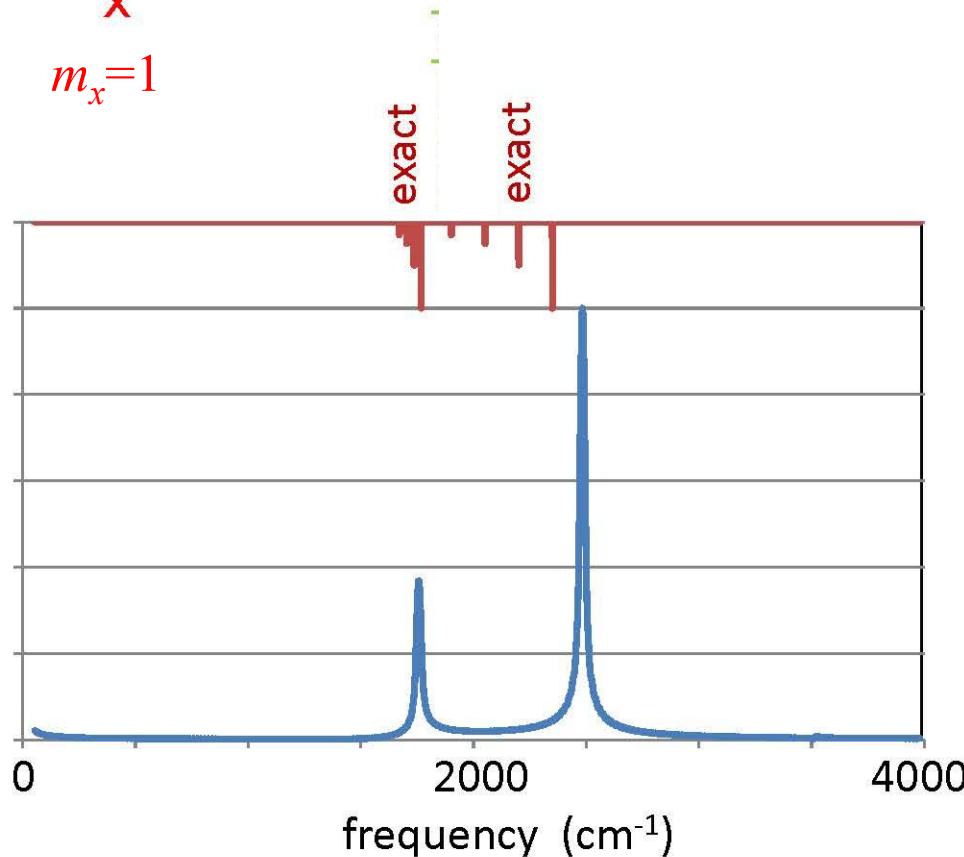


Compute spectra by Fourier Transform
of Dipole Moment Correlation Function

Morse Potentials

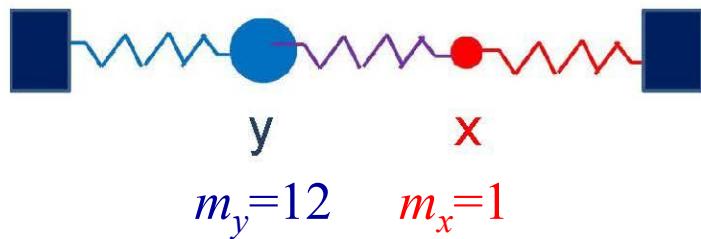


Both atoms classical

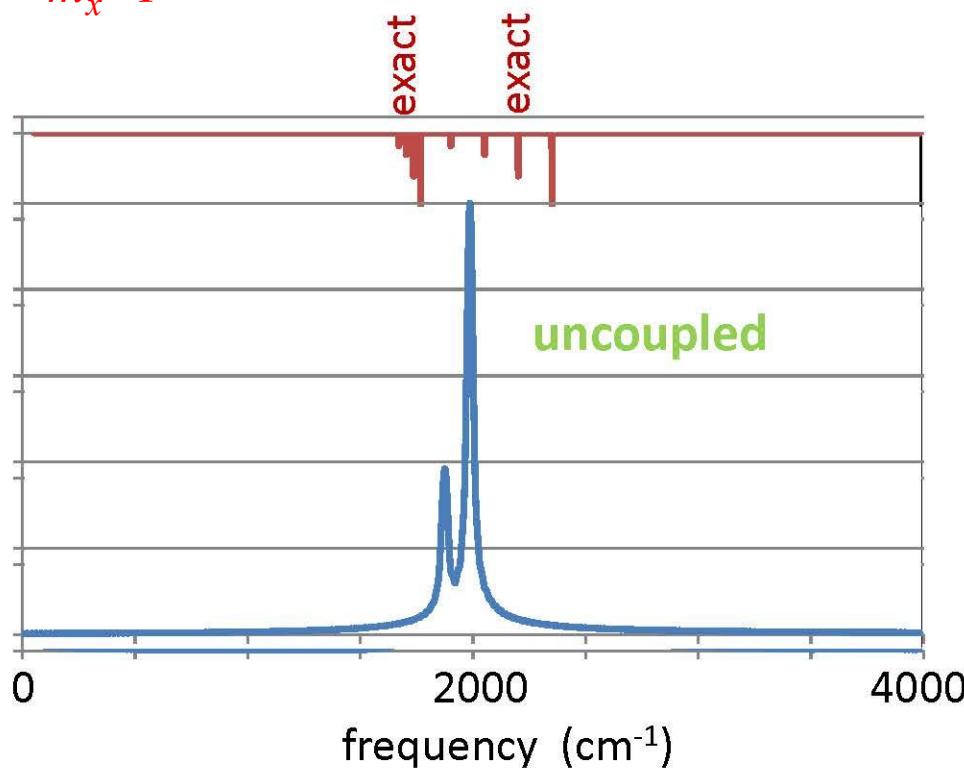


Fourier transform of dipole moment autocorrelation function

Morse Potentials

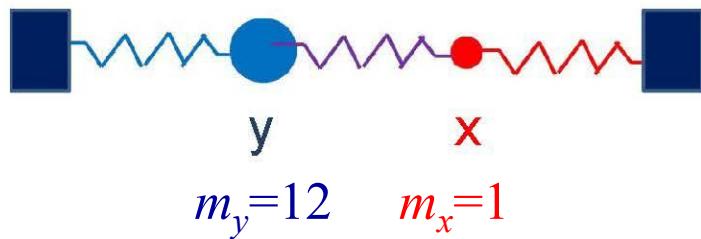


Light atom quantum: Adiabatic

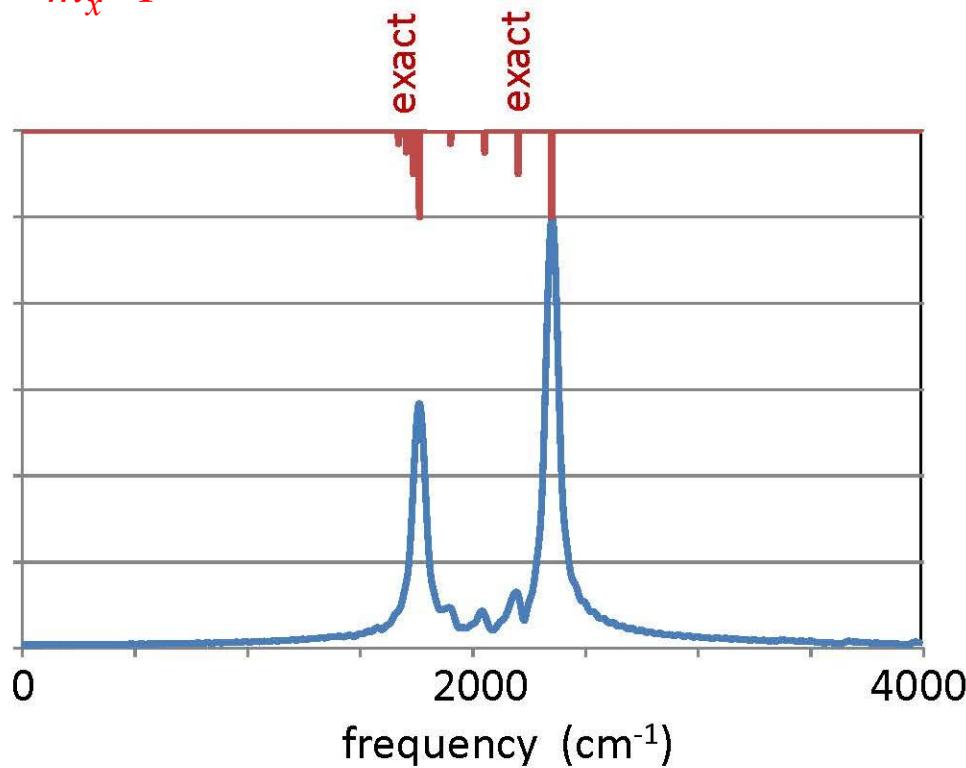


Fourier transform of dipole moment autocorrelation function

Morse Potentials



Light atom quantum: Ehrenfest

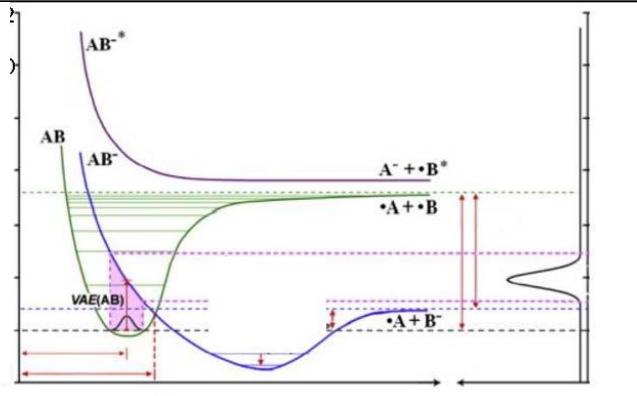


Fourier transform of dipole moment autocorrelation function

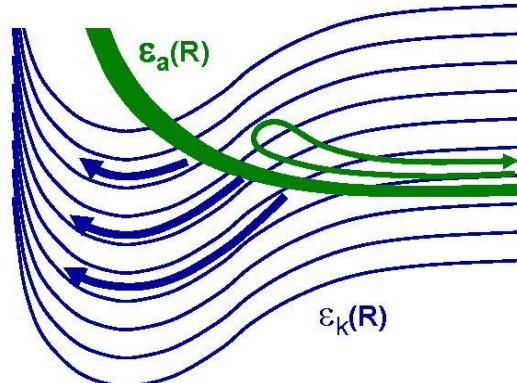
Conclusions about treating some nuclei quantum, others classical

1. Requires nonadiabaticity to achieve coupled motions (e.g., normal modes)
2. True also for electron-nuclear coupled motion, but less dramatic because of mass disparities
3. Ehrenfest incorporates coupled motion
4. *Surface Hopping is problematical*

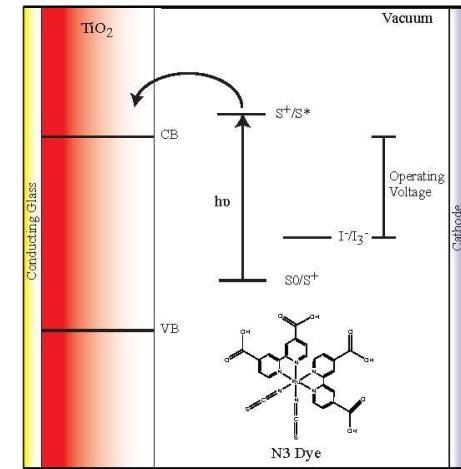
electronic continuum ?



ionization

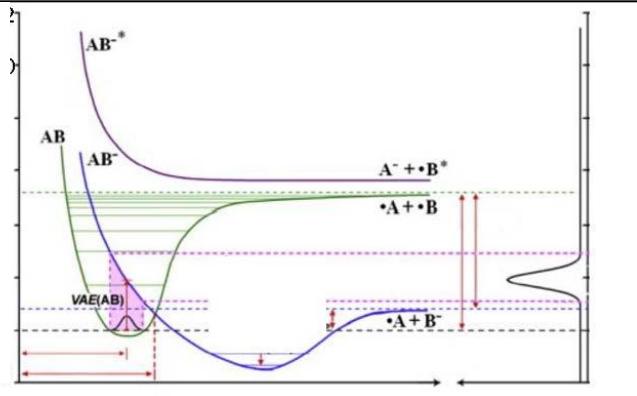


metals

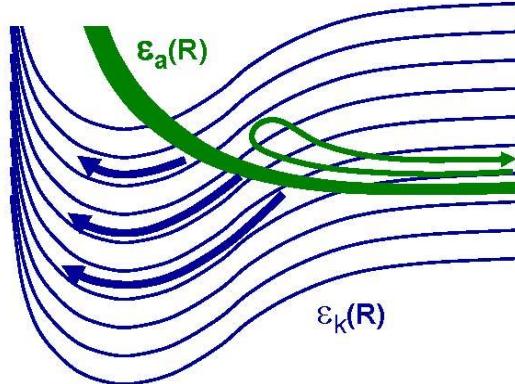


semiconductors

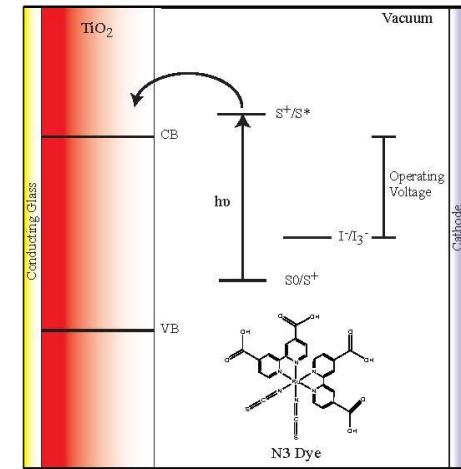
electronic continuum ?



ionization



metals

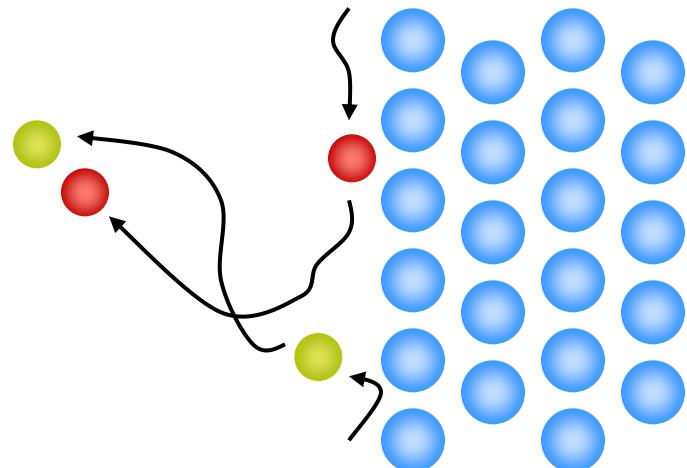


semiconductors

Nonadiabatic dissipation at metal surfaces

Weak Coupling Approx to Ehrenfest:

Molecular Dynamics with Electronic Friction, Martin Head-Gordon, JCT, *J. Chem. Phys.* **103**, 10137 (1995)



$$M \ddot{x} = -\nabla V(x) - \int_0^t dt' \Lambda(t, t') x(t') + R(t),$$

friction kernel

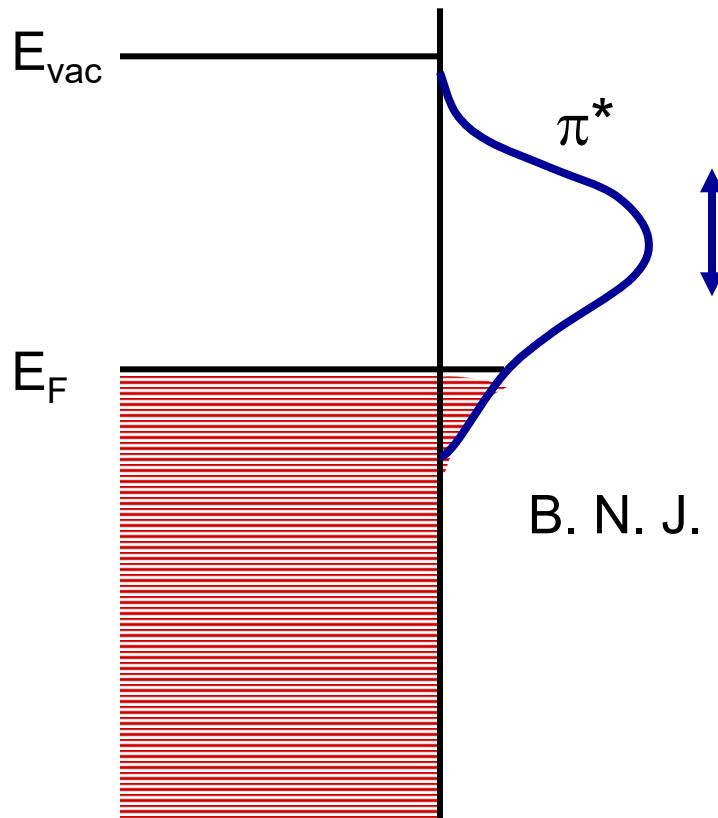
fluctuating force

VIBRATIONAL LIFETIME: CO on Cu(100) (ps.)

MODE	EXPERIMENT	CALC (0K) (<i>Phonons</i>)	CALC(0K) (<i>Electrons</i>)
C – O stretch	2.5 +/- 0.5 (A. Harris et al.)	>100000	3.3 +/- 0.5

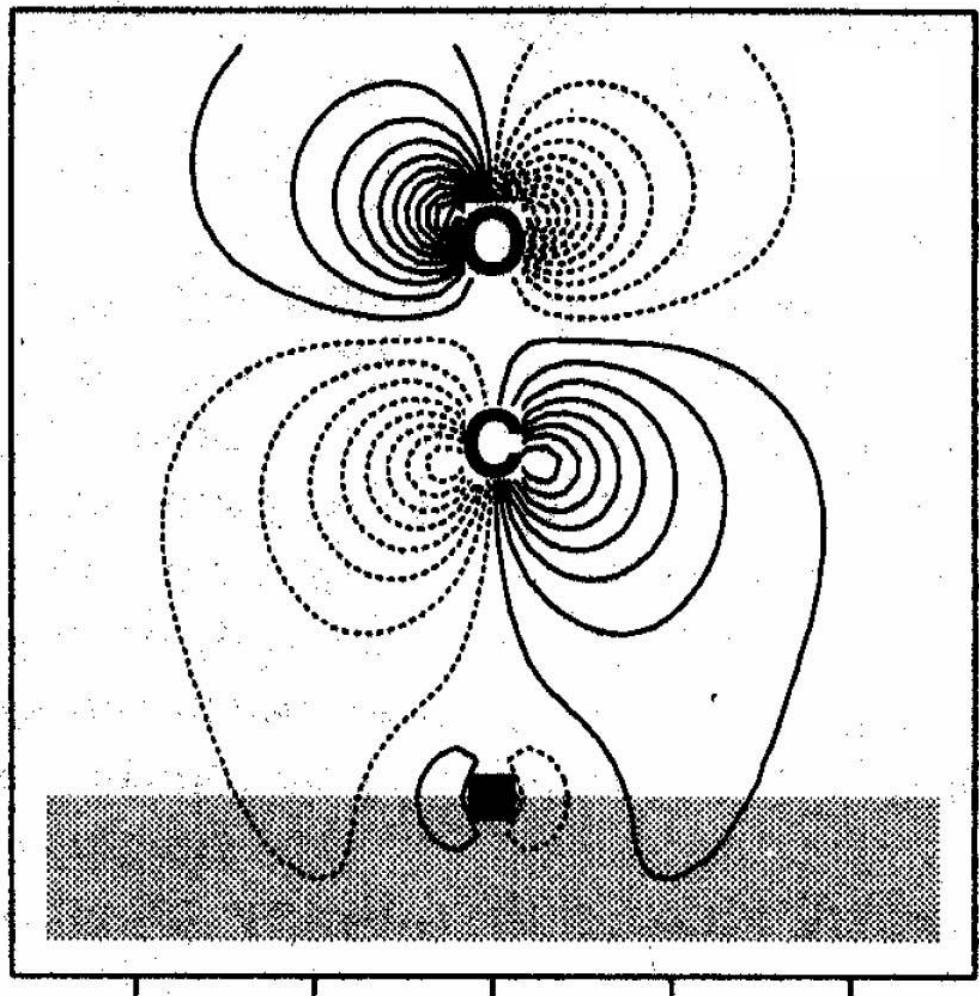
VIBRATIONAL LIFETIME: CO on Cu(100) (ps.)

MODE	EXPERIMENT	CALC (0K) (<i>Phonons</i>)	CALC(0K) (<i>Electrons</i>)
C – O stretch	2.5 +/- 0.5 (A. Harris et al.)	>100000	3.3 +/- 0.5



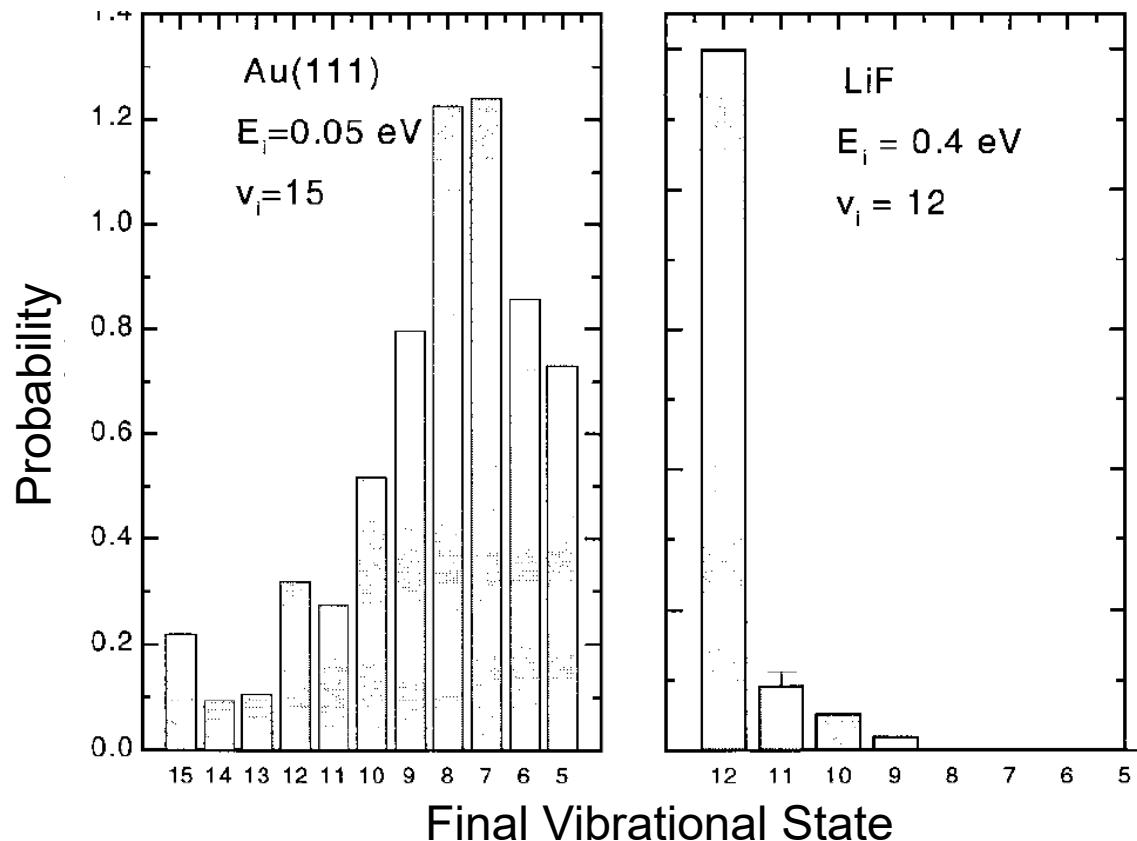
$d\Psi_{\text{HOMO}}/dR$

(C -- O Stretch)



Scattering of vibrationally excited NO from Au(111)

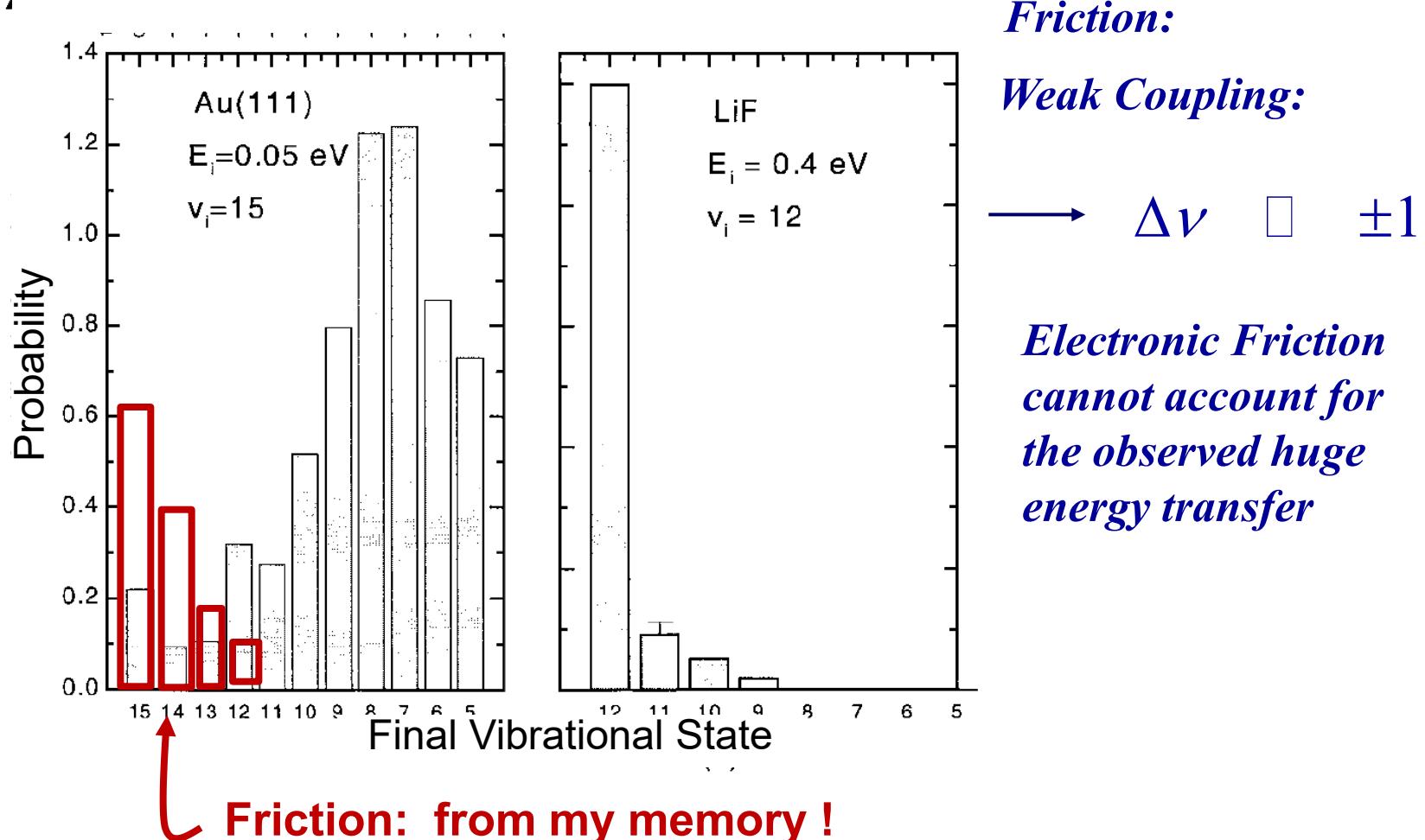
electron transfer: strong coupling



Huang, Rettner, Auerbach, Wodtke, *Science* **2000**, 290, 111.

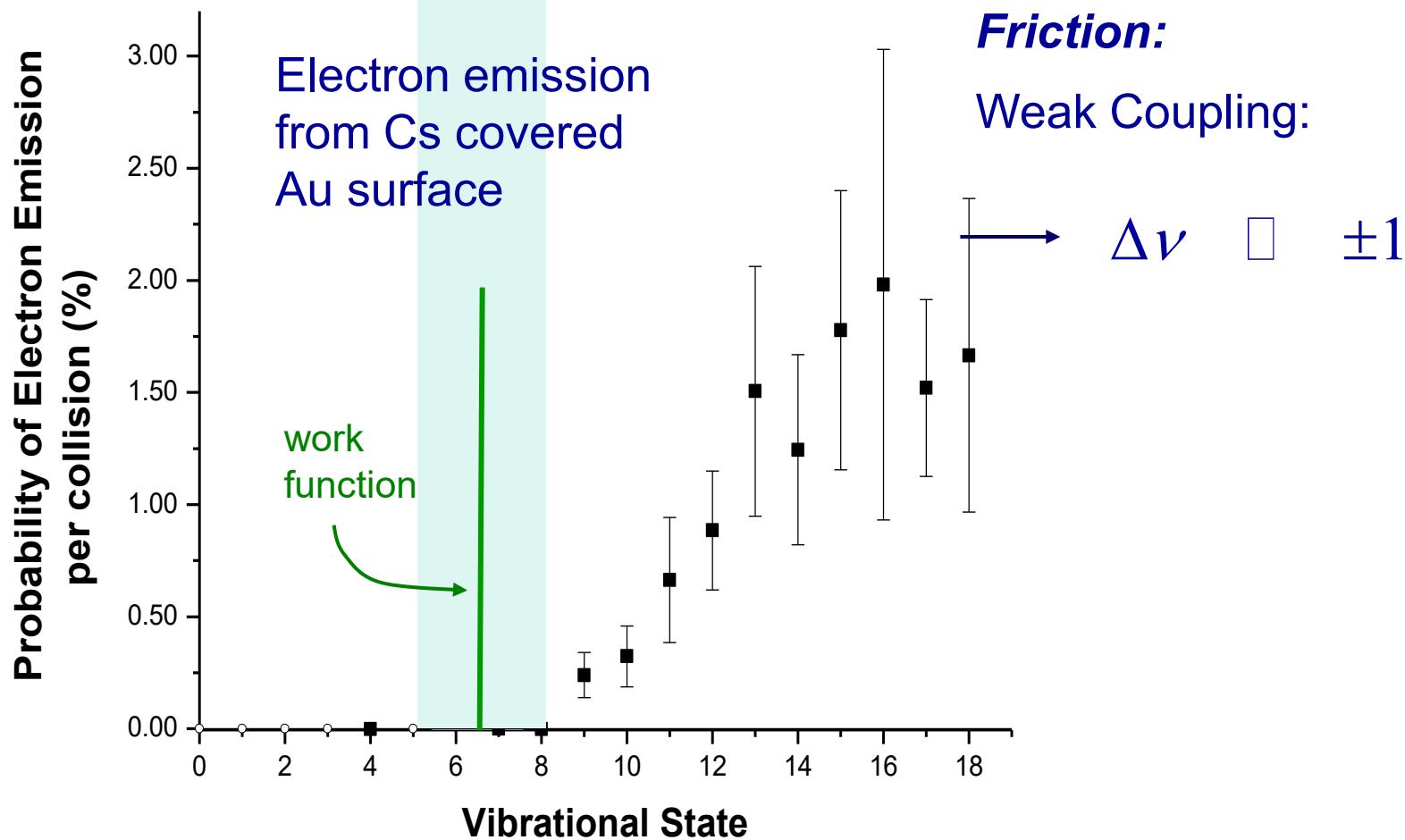
Scattering of vibrationally excited NO from Au(111)

electron transfer: strong coupling



Electron Emission:

→ *inadequacy of electronic friction model*

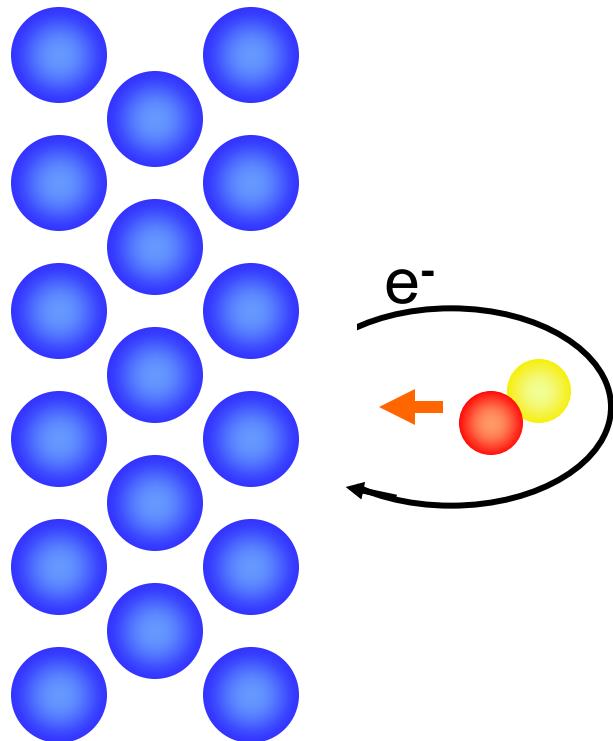


White, J. D.; Chen, J.; Auerbach, D. J.; Wodtke, A. M. *Nature* 2005, 433, 503.

Electronic excitations at metal surfaces?

Inelastic Electron Scattering Picture:

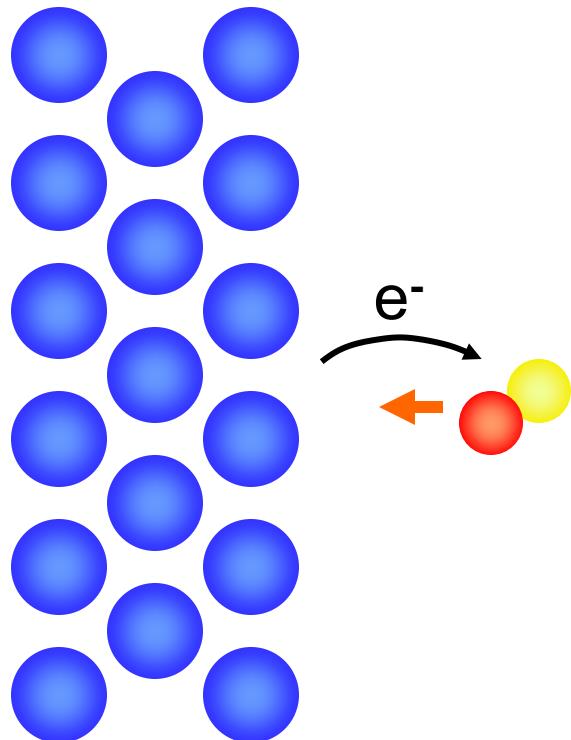
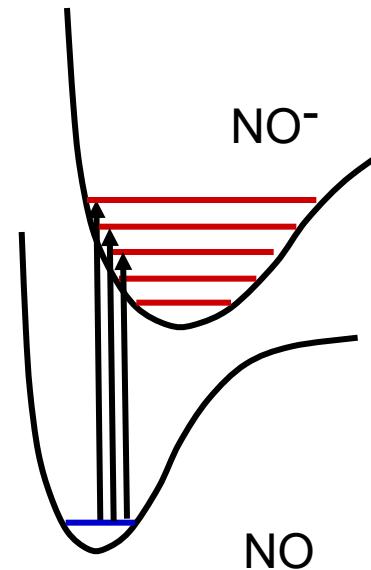
a. Non-Resonant \rightarrow *friction model*



Electronic excitations at metal surfaces?

Inelastic Electron Scattering Picture:

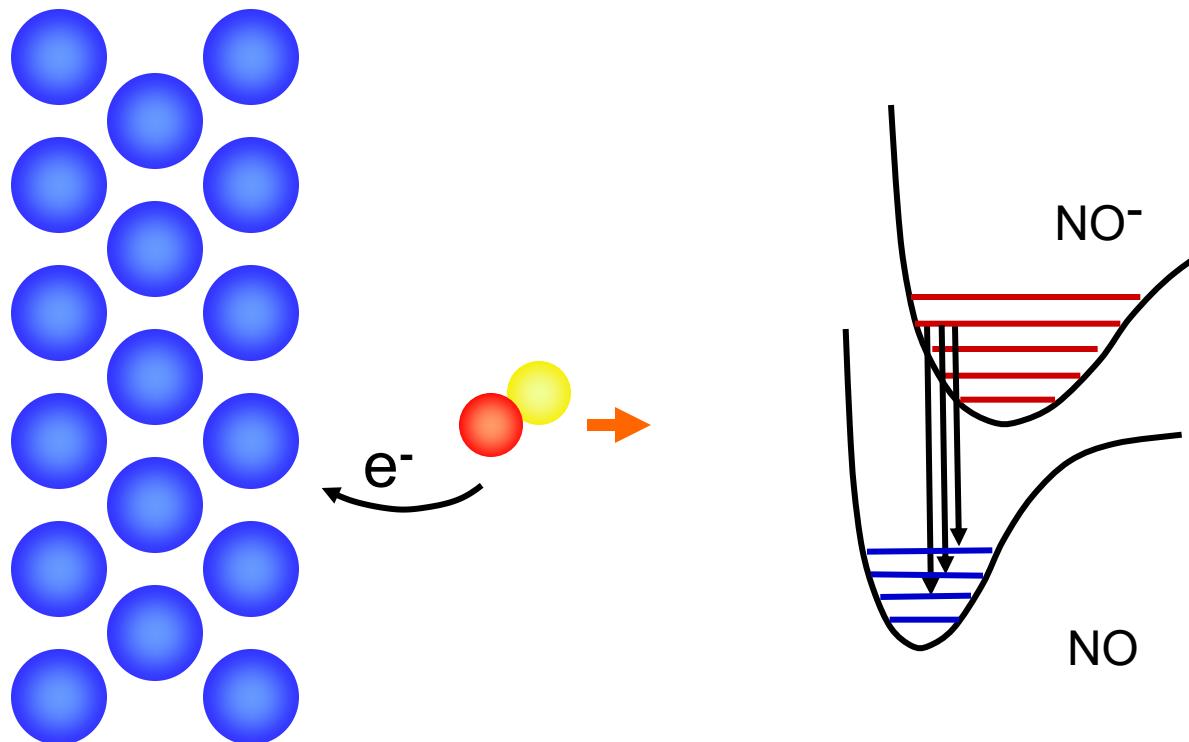
b. Resonant \rightarrow *transient negative ion*



Electronic excitations at metal surfaces?

Inelastic Electron Scattering Picture:

b. Resonant \rightarrow *transient negative ion*

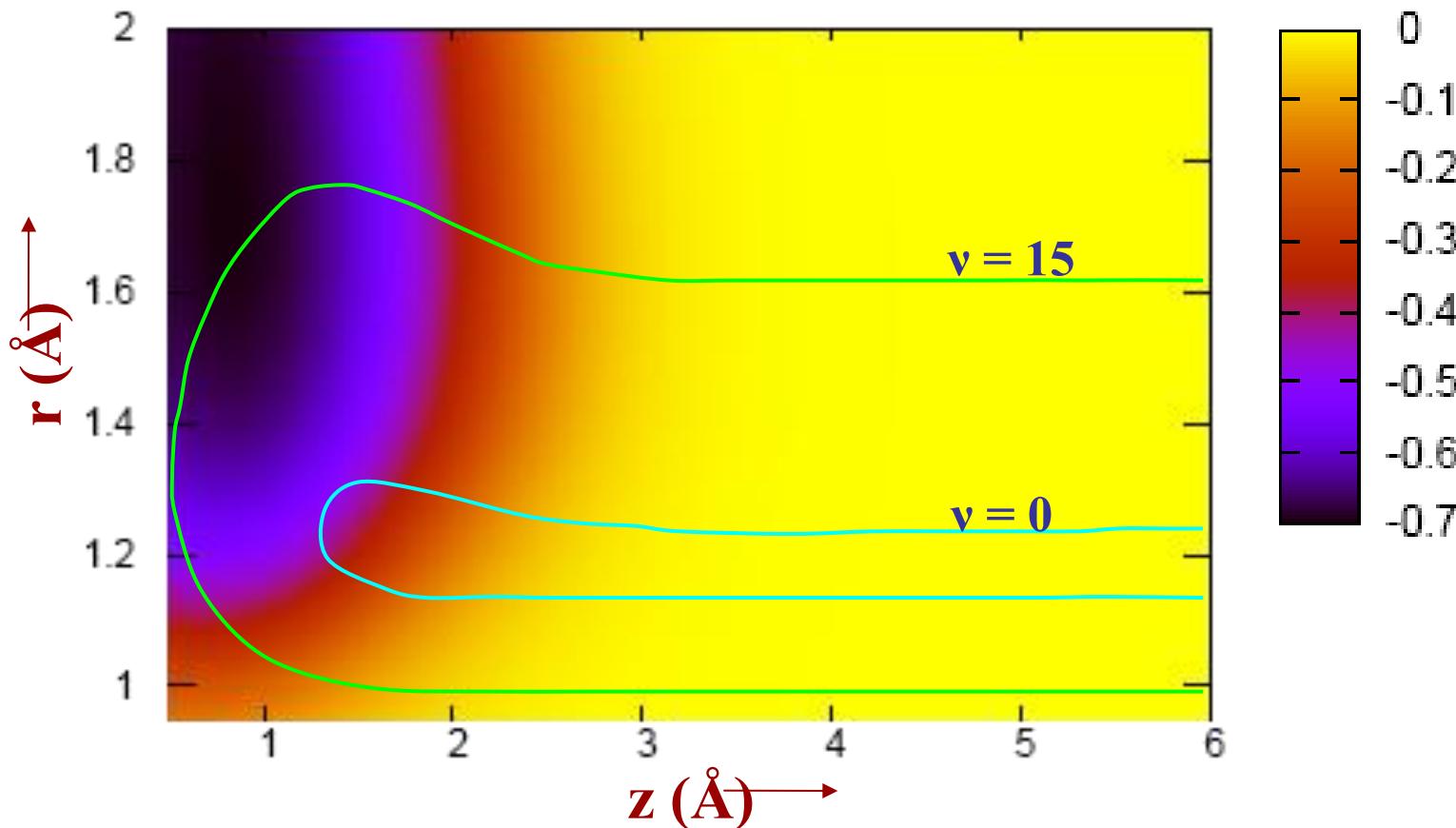


Franck-Condon picture (J. W. Gadzuk)

NO approaching a three-fold site on Au(111)

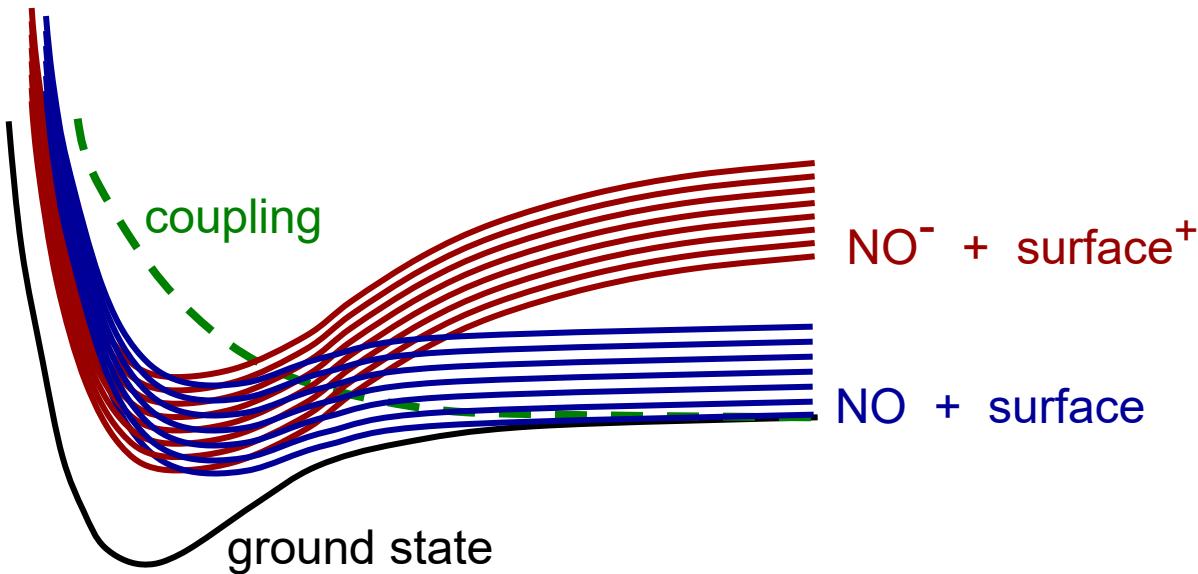
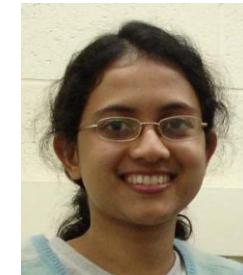
Ground state charge on NO

DFT (VASP, PW91)



Scattering of Nitric Oxide from a Metal Surface (Gold)

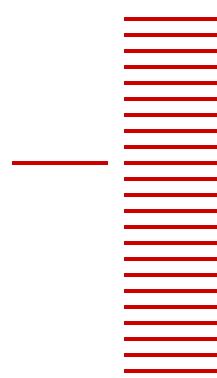
1. Calculations of potential energy surfaces and nonadiabatic couplings? *Newns-Anderson Hamiltonian*
2. Propagation of surface hopping trajectories? *Independent Electron Surface Hopping (IESH)*



Sharani Roy

Neil Shenvi
January 14, 2026

1. Map onto Anderson-Newns (tight binding) picture:

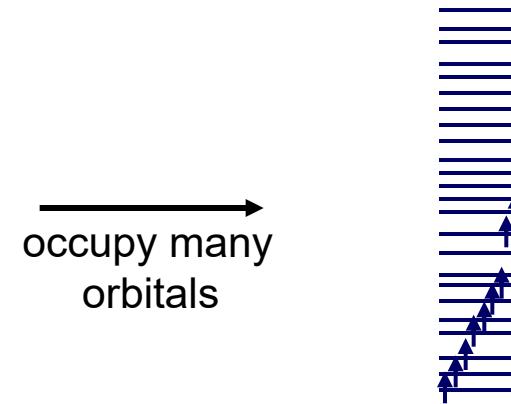


1-el diabatic orbitals

$1 + 60$

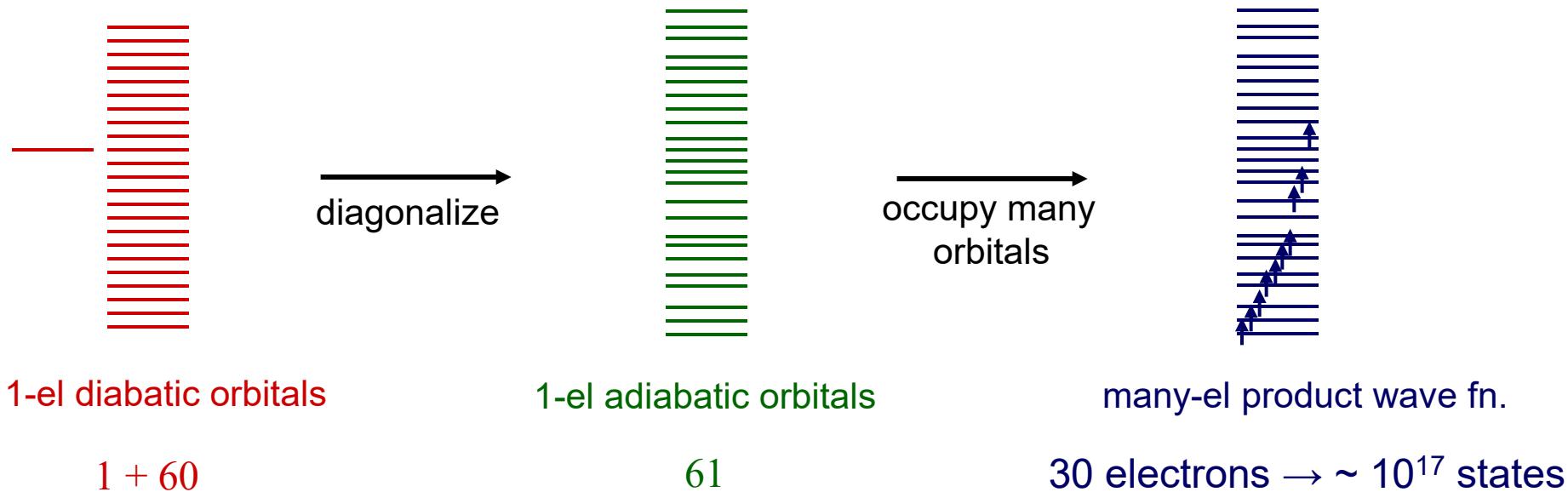
1-el adiabatic orbitals

61

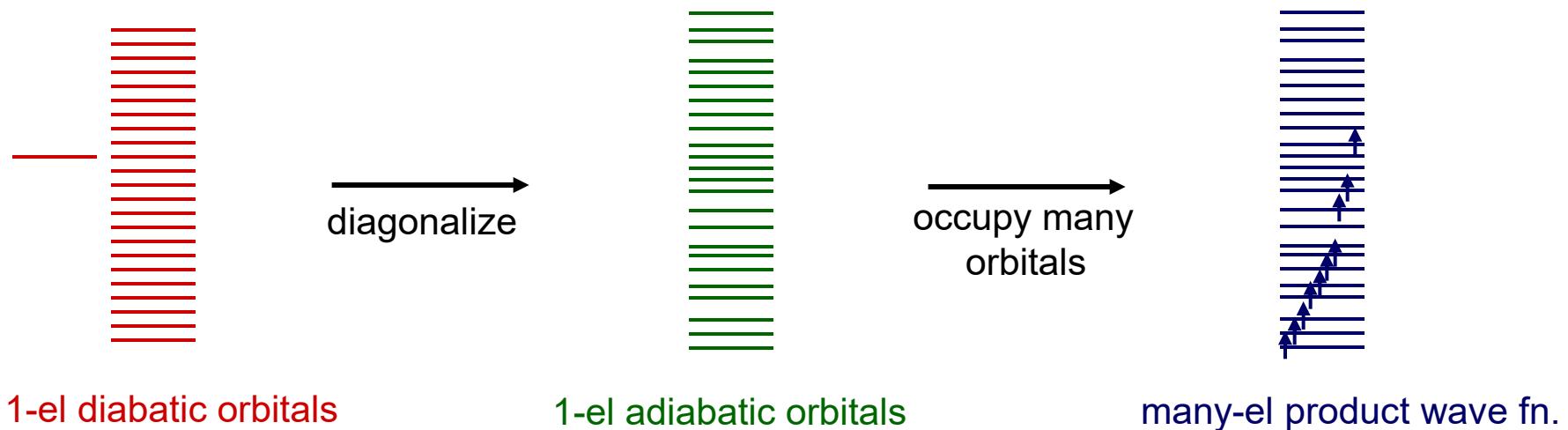


many-el product wave fn.

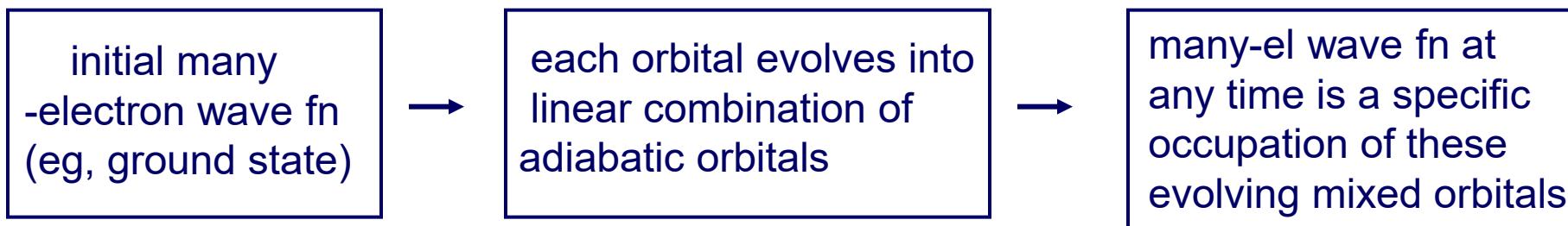
1. Map onto Anderson-Newns (tight binding) picture:



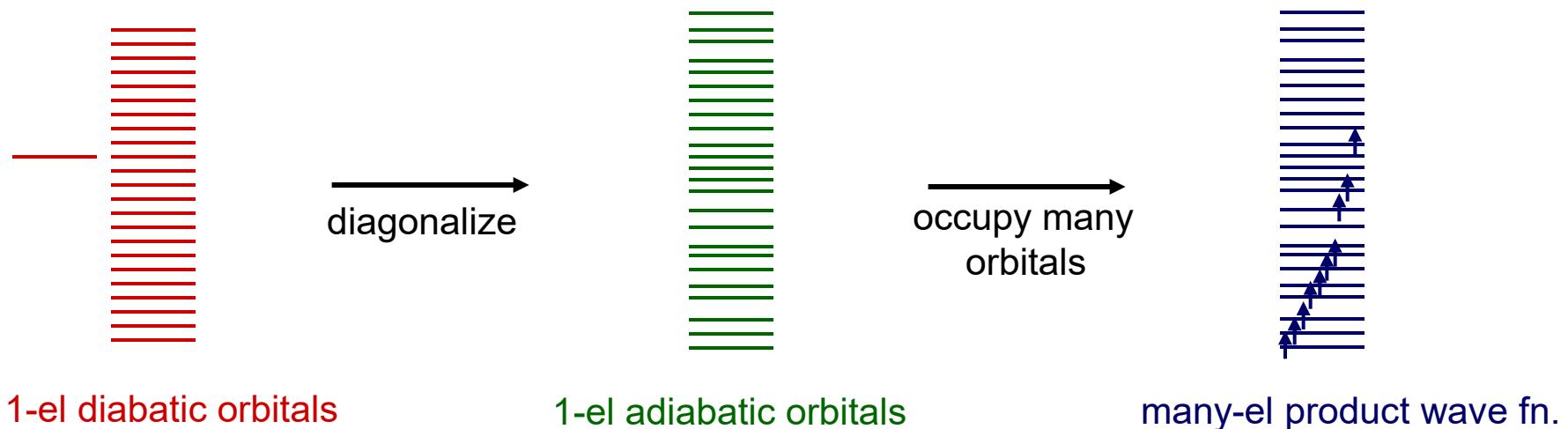
1. Map onto Anderson-Newns picture:



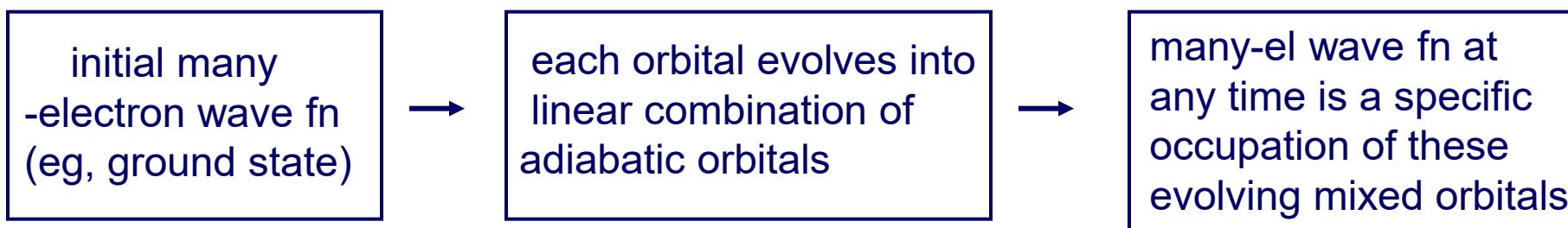
2. Evolve many-electron wave function along trajectory:



1. Map onto Anderson-Newns picture:



2. Evolve many-electron wave function along trajectory:

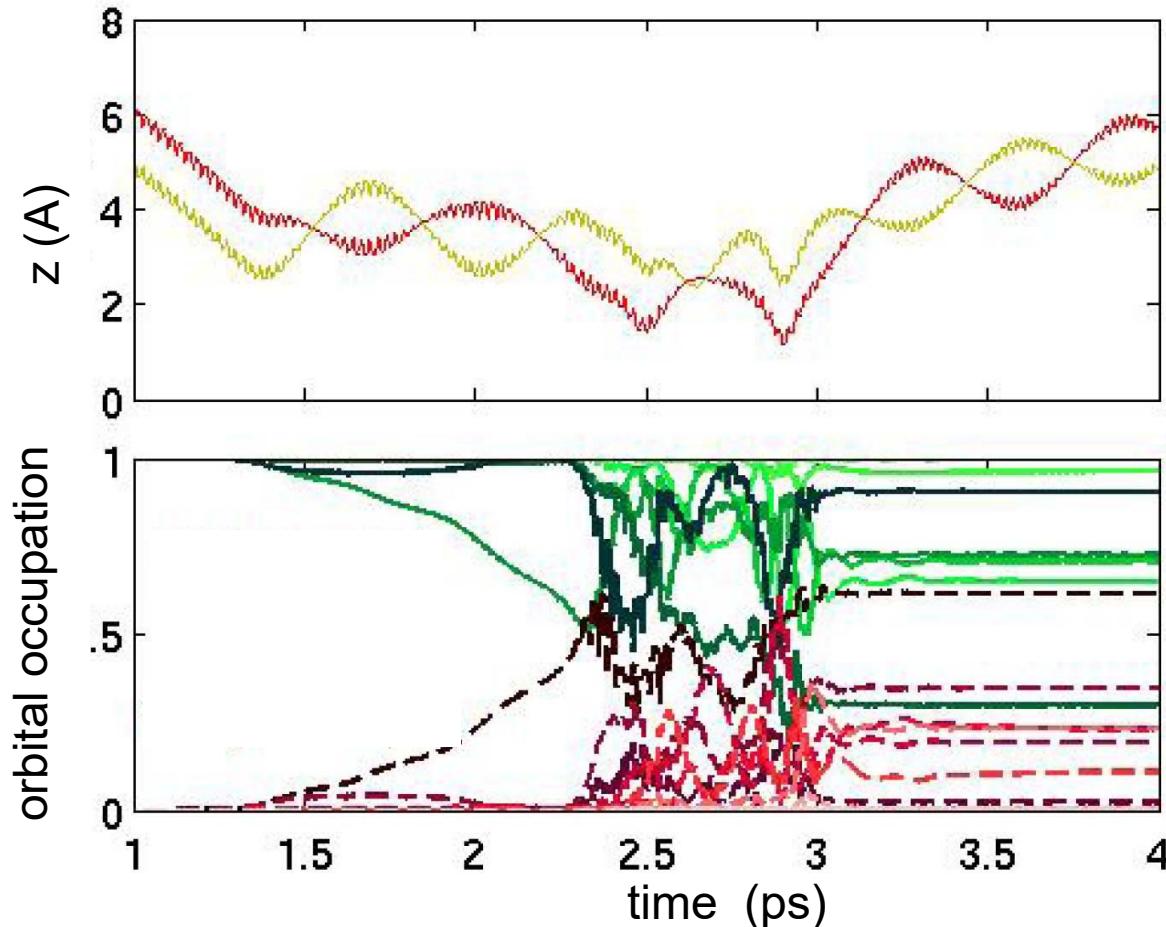


3. Fewest Switches Surface Hop among adiabatic orbitals

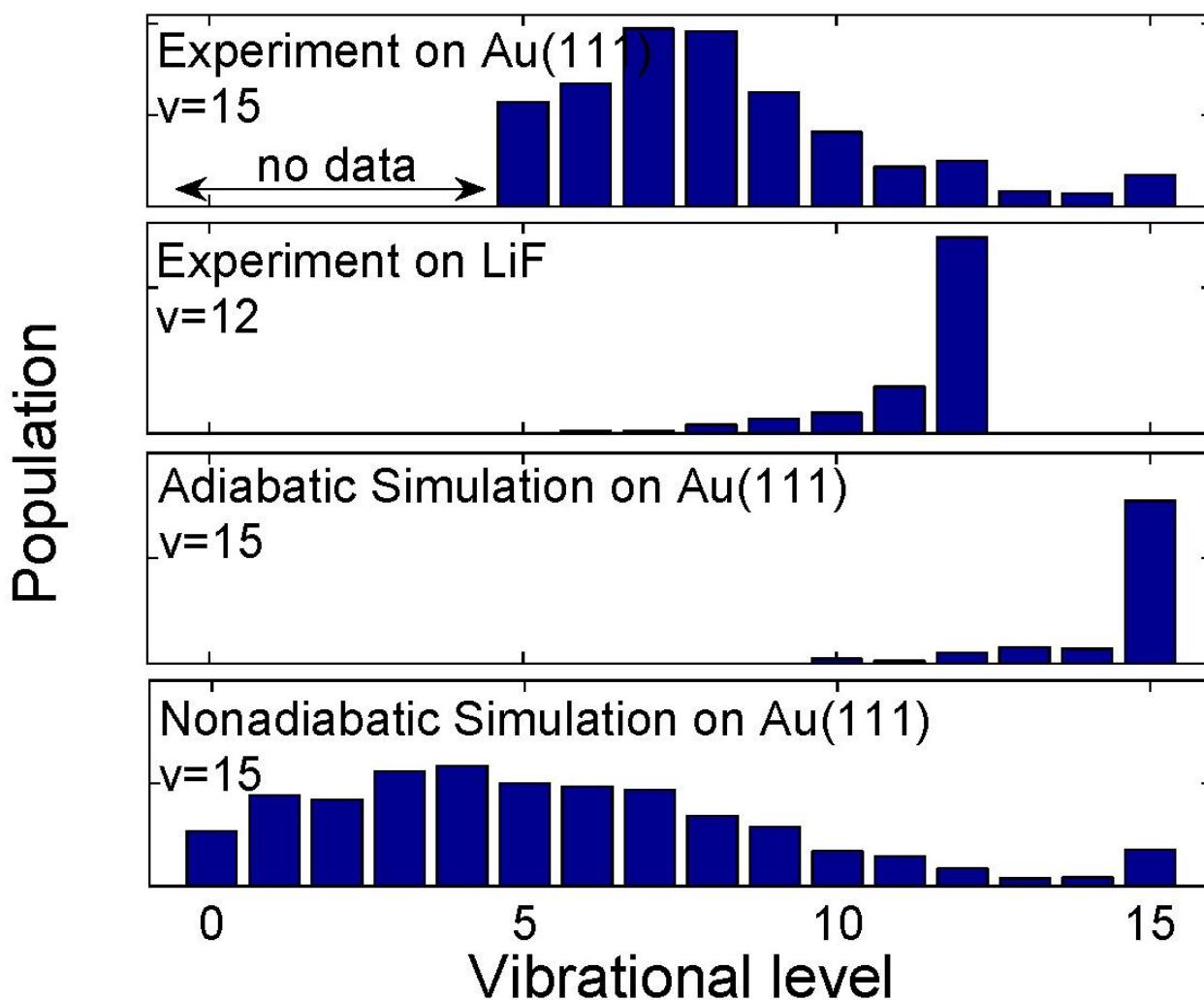
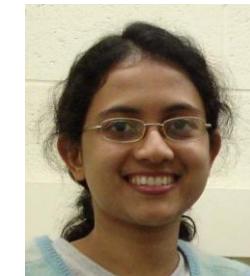
each electron independently

NO($\nu=15$) scattered from Au(111) (surface hopping trajectory)

132 moving Au atoms, accurate phonon spectrum, periodic boundaries, etc.



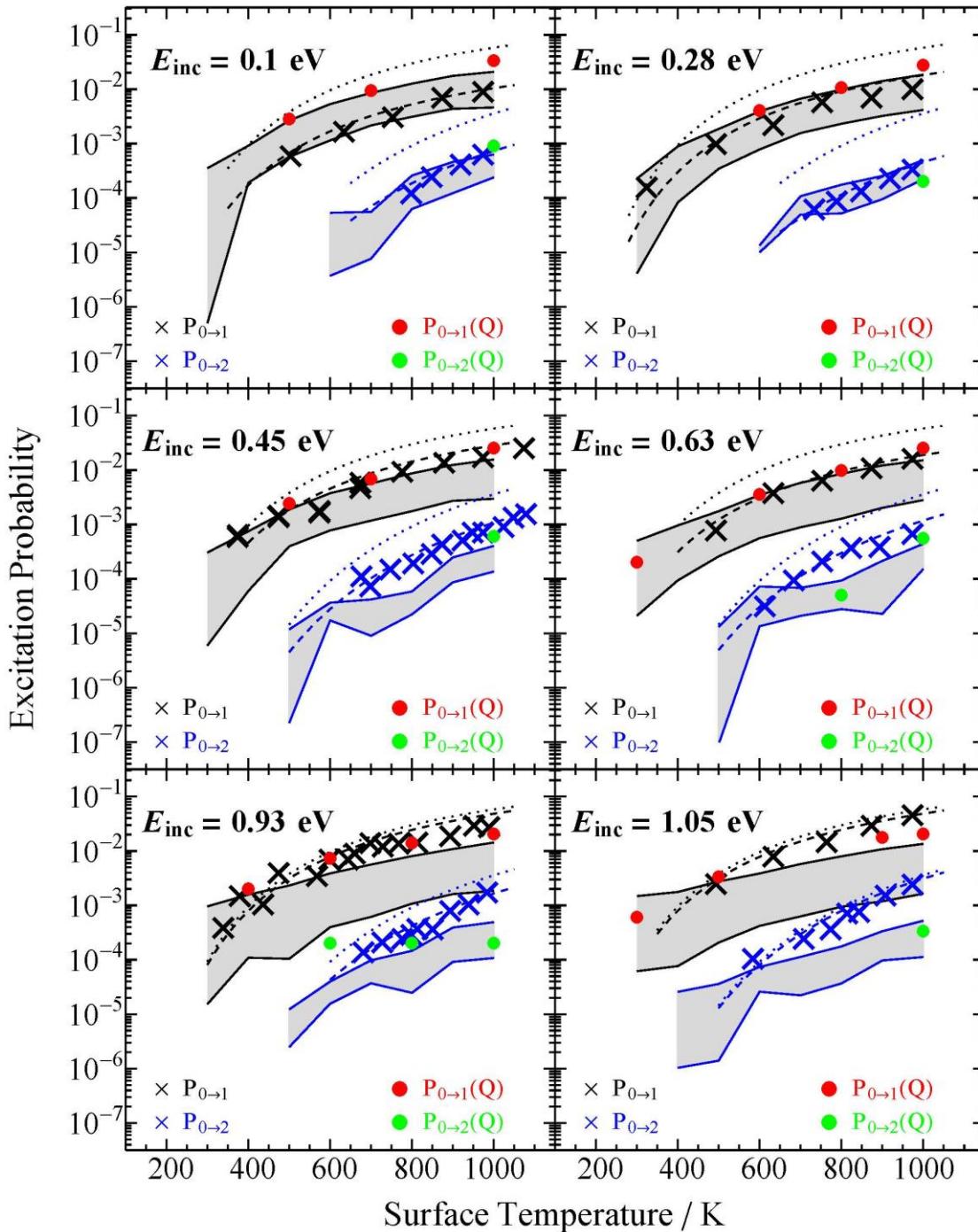
~ 100 surface hops typically encountered



Sharani Roy

Neil Shenvi

Expts: Huang, Rettner, Auerbach, Wodtke,
Science 2000, 290, 111.



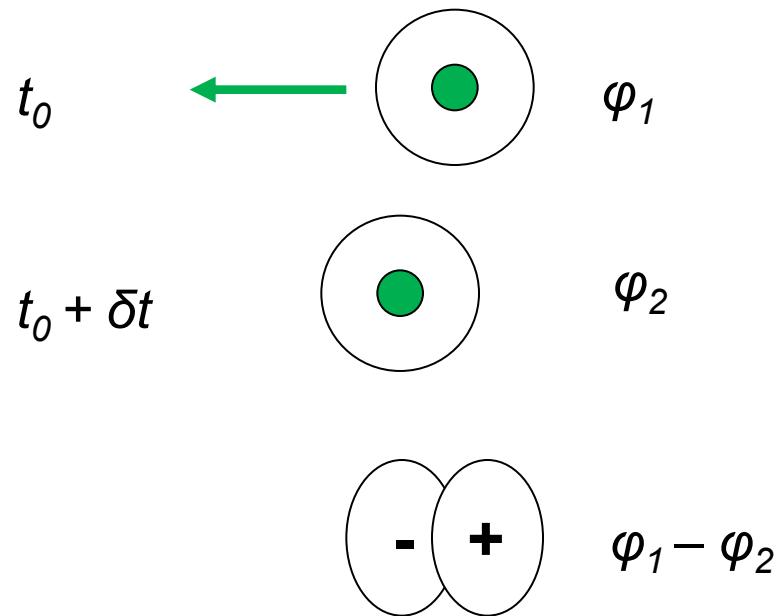
NO(v=0) scattered
from Au(111)

XXXX $P_0 \rightarrow 1$

XXXX $P_0 \rightarrow 2$

Sascha
Kandratsenka

Translational and Angular Momentum Conservation ?



moving nucleus but
stationary electron

$$\varphi(z) \longrightarrow \varphi(z) \exp(i k_e z)$$

Translational and Angular Momentum Conservation ?

Direct Dynamics in Cartesian coordinates:

E_{trans} and J are not conserved

This is true for all nonadiabatic (Cartesian) direct dynamics methods that are based on separation of “fast” and “slow” particles, where energies and couplings of the fast particles are computed at fixed positions of the slow particles, and motion of the slow coordinates is governed by nonadiabatic coupling.

Examples:

Ehrenfest (mean field)

Surface Hopping

Exact Factorization

Nonadiabatic wave packet evolution

Translational and Angular Momentum Conservation ?

Some Strategies:

- Electron translational factors (Subotnik et al. 2023)
$$\varphi(z) \longrightarrow \varphi(z) \exp(i k_e z)$$
- Direct Dynamics with approximations to nonadiabatic couplings that depend only on internal coordinates
- Projection Operator to remove overall translation and rotation from nonadiabatic couplings (Truhlar et al. 2020)
- Fitted potentials and nonadiabatic couplings that depend only on internal coordinates. e.g., machine learning

VISTA: Virtual International Seminar on Theoretical Advancements

Thanks to **Alexey Akimov** for
inaugurating and leading **VISTA**:
100 Seminars!!

VISTA

January 14, 2026