
VISTA                                                                                                         January 14, 2026 

Adventures with Surface Hopping

VISTA: Virtual International Seminar on Theoretical Advancements 



VISTA                                                                                                         January 14, 2026 

Adventures with Surface Hopping

VISTA: Virtual International Seminar on Theoretical Advancements 

A historical view of my role in some of the 

origins and developments of surface hopping

This will not be a scholarly review:  

I will omit many important contributions by others
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Molecular Beam Experiments of the Reaction of H+ with D2

1969 Univ Colorado Boulder

Collaboration with Zdenek Herman, Richard Wolfgang, …

Detect the angular and 

velocity distributions of ions
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Theory:  How hard can it be?

H3
+  :      3 nuclei, 2 electrons

simplest chemical reaction ?
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Theory:  How hard can it be?

H3
+  :      3 nuclei, 2 electrons

simplest chemical reaction ?

However:  2 potential energy surfaces !
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Nonadabatic coupling vector 
Nonadiabatic coupling vector 

Compute Potential Energy Surfaces 

and Nonadiabatic Coupling Vectors

Semiempirical Diatomics in Molecules

R1(a0)

R1(a0)

R2= 7a0

R2= 3a0

R2=oo

R2(a0)
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MIXED QUANTUM-CLASSICAL STRATEGIES 

 FOR NONADIABATIC DYNAMICS

VB

VA

Ehrenfest

(self-consistent field) 

e.g., A. D. McLachlan, Mol. Phys. 1964
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VB

VA

Ehrenfest

(self-consistent field) 

VB

VA

Trajectory Surface-Hopping

motion on individual 

potential energy surfaces

MIXED QUANTUM-CLASSICAL STRATEGIES 

 FOR NONADIABATIC DYNAMICS
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..
( ) R kM R t = − E1] ,   i.e., classical motion on a single adiabatic p.e.s.

Surface Hopping   (1971 Version)
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..
( ) R kM R t = − E1]

2]   Electronic amplitudes along path:

,   i.e., classical motion on a single adiabatic p.e.s.

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



Surface Hopping   (1971 Version)

Approximate |ck|
2 by Landau-Zener formula 
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R

E(R)

?

?

Landau-Zener Approximation: 1932

Assumptions:

1. H11 and H22 linear

2. H12 constant

3.  Velocity constant

2

12

11 22

2
exp

| ( ) / |
nonad

H
P

R H H R

 −
  

 −  


2 x 2 Hamiltonian matrix
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..
( ) R kM R t = − E1]

2]   Electronic amplitudes along path:

,   i.e., classical motion on a single adiabatic p.e.s.

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



Surface Hopping   (1971 Version)

3]   Select electronic state by random number according to |ck|
2

Approximate |ck|
2 by Landau-Zener formula 

Hops occur only at crossing points
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..
( ) R kM R t = − E1]

2]   Electronic amplitudes along path:

,   i.e., classical motion on a single adiabatic p.e.s.

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



4]   Scale momentum in direction of coupling vector to conserve energy

Surface Hopping   (1971 Version)

3]   Select electronic state by random number according to |ck|
2

Approximate |ck|
2 by Landau-Zener formula 

Hops occur only at crossing points

P. Pechukas, Phys. Rev., 1969
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1971

“It takes a laser physicist to be a 

farmer”  Richard Preston, 2010

1971 with graduate student Richard Preston

Used Brookhaven National Labs CDC 6600 supercomputer
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D+ + HD HD+ + D

D2
+ + H

Absolute cross sections for

the reaction of H+ with D2

as a function of incident energy

Points:  surface hopping, 

     Tully - Preston, 1971

Solid curves: experiment, 

     Ochs -Teloy, 1974
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Fast Forward to 1990, Bell Labs:

Need to go beyond

1971 assumption of hopping 

only at crossing points

Turning points

No distinct crossing points

Nearly parallel surfaces

Many electronic states

Broad coupling region

Nonadabatic coupling vector 

R1(a0)

R2(a0)
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Classical 

subsystem
Quantum 

subsystem

drives quantum 

transitions

H q (t)

F V= −
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qi
t





=


 H

Classical 

subsystem
Quantum 

subsystem

drives quantum 

transitions

H q (t)

F V= −
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Classical 

subsystem
Quantum 

subsystem

drives quantum 

transitions

Key:  quantum force: “back-reaction”

How do quantum transitions effect classical path?

H q (t)

qi
t





=


 HF V= −
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Classical 

subsystem
Quantum 

subsystem

drives quantum 

transitions

Key:  quantum force: “back-reaction”

How do quantum transitions effect classical path?

H q (t)

qi
t





=


 HF V= −

How can we treat back-reaction more accurately, and yet retain the 

feature that trajectories end up in distinct states rather than mixtures?
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..
( ) R kM R t = − E1]

2]   Quantum amplitudes along path:

,     i.e., motion on a single adiabatic p.e.s.

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



Surface Hopping   (1990 Version)

R(t)
( )

( )el

t
i t

t


= 


 H
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..
( ) R kM R t = − E1]

2]   Quantum amplitudes along path:

,     i.e., motion on a single adiabatic p.e.s.

3]   Stochastic “hops” between states so that avg probability = |ck(t)|
2

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



Surface Hopping   (1990 Version)

“fewest switches”
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|c2|
2 = 0.8        |c2|

2 = 0.7

8

2

7

3

tk    tk+1

Stochastic Fewest Switches algorithm (2-state):

?



VISTA                                                                                                         January 14, 2026 

tk    tk+1

|c2|
2 = 0.8        |c2|

2 = 0.7

8

2

7
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Stochastic Fewest Switches algorithm (2-state):
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|c2|
2 = 0.8        |c2|

2 = 0.7

8

2

7

3

tk    tk+1

2 2
2 22 2

2 22

2 1 2

2 2

2 2

| ( ) | | ( 1) |
, | ( ) | | ( 1) |

| ( ) |

0 , | ( ) | | ( 1) |

c k c k
c k c k

P c k

c k c k

→

 − +
 +

= 
  +

Stochastic Fewest Switches algorithm (2-state):
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..
( ) R kM R t = − E1]

2]   Quantum amplitudes along path:

,     i.e., motion on a single adiabatic p.e.s.

3]   Stochastic “hops” between states so that avg probability = |ck(t)|
2

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



Surface Hopping   (1990 Version)

4]   Scale momentum in direction of coupling vector to conserve energy

“Pechukas Force”
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..
( ) R kM R t = − E1]

2]   Quantum amplitudes along path:

,     i.e., motion on a single adiabatic p.e.s.

3]   Stochastic “hops” between states so that avg probability = |ck(t)|
2

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



5]   Include decoherence

Surface Hopping   (1990 Version)

4]   Scale momentum in direction of coupling vector to conserve energy
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Decoherence
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..
( ) R kM R t = − E1]

2]   Quantum amplitudes along path:

,     i.e., motion on a single adiabatic p.e.s.

3]   Stochastic “hops” between states so that avg probability = |ck(t)|
2

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



5]   Include decoherence

Surface Hopping   (1990 Version)

4]   Scale momentum in direction of coupling vector to conserve energy

6]   Frustrated Hops

Algorithm calls for a hop but there is insufficient energy in the degree

       of freedom in the direction of the nonadiabatic coupling vector
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Frustrated Hops

       Algorithm calls for a hop but there is insufficient energy in the degree

       of freedom in the direction of the nonadiabatic coupling vector

?

probability on state k  =  |ck|
2

E*

E*= kinetic energy in direction of the

   nonadiabatic coupling vector

Critical element of Surface Hopping:  Branching probabilities are 

determined  not by |ck|
2, but by the fraction of trajectories on each state. 
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Frustrated Hops and Detailed Balance

• Infrequent events

     Equilibrium

h

e.g., nonradiative transition

   vs. reaction on excited state

• Condensed Phases

• Relaxation Processes

• Multiple Transitions

Detailed Balance:    

N1 P12  =  N2 P21

• Long Timescales

Priya Parandekar

J. R. Schmidt
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exp(-ΔΕ/kΤ)kΤ -
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2-Electronic State Model    ΔE = 34.6 kJ/mole

Excited State Population vs. Inverse Temperature

loge(0.5)
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[classical bath] --- C --- C --- C --- C --- C --- C --- C --- C --- H

quantum

  (Morse)
classical

  (Morse)

Random force and friction

             (5000 oK)

Ehrenfest (SCF)                             Surface Hopping

V=0

V=1

V=2

V=3

2005  Priya ParandekarMany Quantum States

time time
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..
( ) R kM R t = − E1]

2]   Quantum amplitudes along path:

,     i.e., motion on a single adiabatic p.e.s.

3]   Stochastic “hops” between states so that avg probability = |ck(t)|
2

.
|j jj j j R i i

i

i
dc dt V c R c = − −    



5]   Include decoherence

Surface Hopping   (1990 Version)

4]   Scale momentum in direction of coupling vector to conserve energy

6]   Frustrated Hops

Algorithm calls for a hop but there is insufficient energy in the degree

       of freedom in the direction of the nonadiabatic coupling vector
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Treat Nuclear Motion by Quantum Mechanics:

Prohibitive for large number of nuclei

Compromise strategy:  a few quantum nuclei, the rest classical  

• tunneling

• zero-point motion

• quantized energy levels
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Treat Nuclear Motion by Quantum Mechanics:

Prohibitive for large number of nuclei

Compromise strategy:  a few quantum nuclei, the rest classical  

• tunneling

• zero-point motion

• quantized energy levels

However: 

justification of the

Born-Oppenheimer 

approximation ??? 
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Mixed Quantum-Classical  Nuclear Motion 

Quantum Effects:

 Zero-Point Energy

 Quantized Energy Levels

 Tunneling

Sharon Hammes-Schiffer and JCT, J. Chem. Phys. 101, 4657 (1994) 
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Mixed Quantum-Classical  Nuclear Motion 

Quantum Effects:

 Zero-Point Energy

 Quantized Energy Levels

 Tunneling

Sharon Hammes-Schiffer and JCT, J. Chem. Phys. 101, 4657 (1994) 
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Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)
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Solvent
Fluctuation

Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)
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Adiabatic  Reaction  

Solvent
Fluctuation

Solvent
Fluctuation

Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)
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switch

 states

tunneling splitting

Adiabatic  Reaction  

Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)
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Nonadiabatic  No ReactionAdiabatic  Reaction  

switch

 states

Adiabatic vs. Nonadiabatic (Sharon Hammes-Schiffer, JCT)
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Vibrational Spectra ?      JCT,  J. Chem. Phys. 2023

Simple 2 atom linear model

Compute spectra by Fourier Transform 

of Dipole Moment Correlation Function

Mixed Quantum-Classical  Nuclear Motion 
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my=12     mx=1
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Conclusions about treating some nuclei quantum, others classical

1. Requires nonadiabaticity to achieve coupled motions 

          (e.g., normal modes)

2. True also for electron-nuclear coupled motion, but less 

           dramatic because of mass disparities

3.   Ehrenfest incorporates coupled motion

4.   Surface Hopping is problematical
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ionization                                  metals                           semiconductors

electronic continuum ?
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ionization                                  metals                           semiconductors

electronic continuum ?
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0

( ) ' ( , ') ( ') ( ),

t

M x V x dt t t x t R t= − −  +


friction kernal fluctuating force

Molecular Dynamics with Electronic

Friction, Martin Head-Gordon, JCT,

J. Chem. Phys. 103, 10137 (1995)

Weak Coupling Approx to Ehrenfest:

Nonadiabatic dissipation at metal surfaces
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VIBRATIONAL LIFETIME:  CO on Cu(100)  (ps.)

 MODE             EXPERIMENT     CALC (0K)                CALC(0K)

                   (Phonons)                 (Electrons)

C – O  2.5 +/- 0.5           >100000             3.3 +/- 0.5

stretch           (A. Harris et al.)                       
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VIBRATIONAL LIFETIME:  CO on Cu(100)  (ps.)

 MODE             EXPERIMENT     CALC (0K)                CALC(0K)

                   (Phonons)                 (Electrons)

C – O  2.5 +/- 0.5           >100000             3.3 +/- 0.5

stretch           (A. Harris et al.)                       

                   
Evac

EF

*

B. N. J. Persson and M. Persson, (1980)
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dHOMO/dR ( C -- O  Stretch )
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Huang, Rettner, Auerbach, Wodtke,Science 2000, 290, 111.

Scattering of vibrationally excited NO from Au(111)

electron transfer:  strong coupling
P

ro
b
a
b
ili

ty

Final Vibrational State
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Scattering of vibrationally excited NO from Au(111)

electron transfer:  strong coupling
P

ro
b
a
b
ili

ty

Final Vibrational State

Friction:  from my memory !

1 

Friction:

     Weak Coupling:

Electronic Friction

cannot account for

the observed huge 

energy transfer
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Electron Emission:

  inadequacy of electronic friction model 

White, J. D.; Chen, J.; Auerbach, D. J.; Wodtke, A. M. Nature 2005, 433, 503.
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Vibrational State



Electron emission

from Cs covered

Au surface

work

 function

1 

Friction:

     Weak Coupling:
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Electronic excitations at metal surfaces?

Inelastic Electron Scattering Picture:

a.  Non-Resonant     friction model

e-
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NO

NO-

e-

Electronic excitations at metal surfaces?

Inelastic Electron Scattering Picture:

b.  Resonant     transient negative ion
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NO

NO-

e-

Electronic excitations at metal surfaces?

Inelastic Electron Scattering Picture:

b.  Resonant     transient negative ion

Franck-Condon picture (J. W. Gadzuk)
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NO approaching a three-fold site on Au(111)

z (Å) 

r 
(Å

) 
Ground state charge on NO

DFT (VASP, PW91)

ν = 0

ν = 15
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   1.   Calculations of potential energy surfaces and

         nonadiabatic couplings?

   2.   Propagation of surface hopping trajectories?         

Newns-Anderson Hamiltonian

Independent Electron Surface Hopping (IESH)

NO-  +  surface+

NO  +  surface

coupling

ground state

Scattering of Nitric Oxide from a Metal Surface (Gold)

Sharani Roy

Neil Shenvi
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1-el diabatic orbitals

diagonalize

1-el adiabatic orbitals

occupy many

     orbitals 

many-el product wave fn.

1. Map onto Anderson-Newns (tight binding) picture:

1 + 60 61
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1-el diabatic orbitals

diagonalize

1-el adiabatic orbitals

occupy many

     orbitals 

many-el product wave fn.

1. Map onto Anderson-Newns (tight binding) picture:

1 + 60 61 30 electrons → ~ 1017 states
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1-el diabatic orbitals 1-el adiabatic orbitals

occupy many

     orbitals 

many-el product wave fn.

1. Map onto Anderson-Newns picture:

initial many

-electron wave fn

(eg, ground state)

each orbital evolves into 

 linear combination of

adiabatic orbitals

many-el wave fn at

any time is a specific

occupation of these

evolving mixed orbitals

2. Evolve many-electron wave function along trajectory:

diagonalize
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1-el diabatic orbitals 1-el adiabatic orbitals

occupy many

     orbitals 

many-el product wave fn.

1. Map onto Anderson-Newns picture:

initial many

-electron wave fn

(eg, ground state)

each orbital evolves into 

 linear combination of

adiabatic orbitals

many-el wave fn at

any time is a specific

occupation of these

evolving mixed orbitals

2. Evolve many-electron wave function along trajectory:

3. Fewest Switches Surface Hop among adiabatic orbitals

         each electron independently

    

diagonalize
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NO(v=15) scattered from Au(111)     (surface hopping  trajectory)

z
 (

A
)

o
rb

it
a
l 
o
c
c
u
p
a
ti
o
n

time  (ps)

132 moving Au atoms, accurate phonon 

spectrum, periodic boundaries, etc.

~ 100 surface

 hops typically

 encountered
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Expts: Huang, Rettner, Auerbach, Wodtke, 

Science 2000, 290, 111.

Sharani Roy

Neil Shenvi
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Sascha

Kandratsenka

xxxx     P0      1  

xxxx     P0      2  

NO(v=0) scattered

from Au(111)
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-   +

t0

t0 + δt

φ1 – φ2

φ2

φ1

moving nucleus but 

stationary electron

Translational and Angular Momentum Conservation ?

(z) exp( i ke z)φ (z) φ
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Translational and Angular Momentum Conservation ?

Direct Dynamics in Cartesian coordinates:

     Etrans and J are not conserved

This is true for all nonadiabatic (Cartesian) direct dynamics 

methods that are based on separation of “fast” and “slow” 

particles, where energies and couplings of the fast particles are 

computed at fixed positions of the slow particles, and motion of 

the slow coordinates is governed by nonadiabatic coupling. 

Examples:

  Ehrenfest (mean field)

  Surface Hopping

  Exact Factorization

  Nonadiabatic wave packet evolution
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Translational and Angular Momentum Conservation ?

Some Strategies:

• Electron translational factors (Subotnik et al. 2023)

• Direct Dynamics with approximations to nonadiabatic couplings

        that depend only on internal coordinates

• Projection Operator to remove overall translation and rotation from     

        nonadiabatic couplings  (Truhlar et al. 2020)

• Fitted potentials and nonadiabatic couplings that depend only on 

        internal coordinates.  e.g., machine learning

(z) exp( i ke z)φ (z) φ
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VISTA: Virtual International Seminar on Theoretical Advancements 

Thanks to Alexey Akimov for 

inaugurating and leading VISTA: 

            100 Seminars!!
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