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Motivation / Background

Why? 

• Computational expense scales with system size

• Simulations require many molecular dynamics trajectories (initial conditions). 

• Trajectories need to be sufficiently long enough to capture the dynamical process.

Goal: Simulate Non-Adiabatic dynamics in nanoscale / periodic systems

Nonadiabatic dynamics is very expensive for nanoscale and periodic systems

Periodic Solids Cluster / Slab InterfaceNanoclusters Monolayer Interface

Nanoscale and periodic systems are common sensitizers in photovoltaic devices

High demand for clean energy sources
One way to meet this demand is though photovoltaic cells 
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Classical Path Approximation (CPA) 

aka Neglect-of-Back-Reaction Approximation (NBRA)

• Changes to a single electron make only a small change to the density

Affordable NAMD for Large Systems

4 x 359 = 1,436 electrons 7 x 214 = 1,498 electrons 

1,436 + 1,498 = 2,934 electrons 

Si atoms F atoms

• Allows for the use of precomputed nuclear trajectories for NAMD

Makes NAMD for large 

systems possible

Prezhdo, O. V.; Duncan, W. R.; Prezhdo, V. V. Progress in Surface Science 2009, 84 (1), 30–68 

𝟐. 𝟐 𝐧𝐦

𝐒𝐢𝟑𝟓𝟗𝐅𝟐𝟏𝟒
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Can still be expensive
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𝐷𝑖𝑗 ≈
𝛷𝑖 𝑡 𝛷𝑗 𝑡 − 𝑑𝑡 − 𝛷𝑗 𝑡 𝛷𝑖 𝑡 − 𝑑𝑡

2𝑑𝑡

𝑃𝑖𝑗 = −2𝑑𝑡
𝑅𝑒 𝑐𝑖𝑐𝑗

∗𝐷𝑖𝑗

𝑐𝑖𝑐𝑖
∗

NBRA workflow

WFC-based NBRA NAC-Free NBRA

𝑃𝑖𝑗 = exp −
𝜋

2ℏ

𝑍𝑖𝑗
3 𝑡𝑚𝑖𝑛

ሷ𝑍𝑖𝑗 𝑡𝑚𝑖𝑛

Obtain nuclear coordinates and state energies for 

all trajectories for all times

Smith, B.; Akimov, A. V.  JPCL. 2020, 11 (4), 1456–1465.

Perform a sampling of a 

certain electronic state
1.

Compute 𝑯𝒗𝒊𝒃 for all 

trajectories for all times 
2.

Compute nonadiabatic 

dynamics
3.

Belyaev, A. K.; Lebedev, O. V. Phys. Rev. A 2011, 84 (1), 014701

ETA: days - weeks

ETA: days - weeks

ETA: day(s)
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Landau-Zener within NBRA

In 2011, Belyaev and Lebedev (BL) reformulate original 

LZ formula in terms of only adiabatic properties:

• Energy gaps

• Time-derivatives

𝜕2𝑍𝑖𝑗

𝜕𝑡2
𝑡 =

1

𝑑𝑡2
൯𝑍𝑖𝑗(𝑡𝑛−1) − 2𝑍𝑖𝑗(𝑡𝑛) + 𝑍𝑖𝑗(𝑡𝑛+1

𝜕2𝑍𝑖𝑗

𝜕𝑡2
𝑡 > 0𝑡𝑚𝑖𝑛 =

൯𝑍𝑖𝑗(𝑡𝑛−1) − 𝑍𝑖𝑗(𝑡𝑛+1 𝑑𝑡

2 ൯𝑍𝑖𝑗(𝑡𝑛−1) − 2𝑍𝑖𝑗(𝑡𝑛) + 𝑍𝑖𝑗(𝑡𝑛+1

Energy Gaps as N-point Lagrange Interpolants

𝑍𝑖𝑗 𝑡 =෍
𝑛=1

𝑁

𝑍𝑖𝑗 𝑡𝑛 ෑ

𝑚=1,𝑚≠𝑛

𝑁
𝑡 − 𝑡𝑚
𝑡𝑛 − 𝑡𝑚

Computed derivatives with standard differentiation 

Energy gaps and derivatives used to compute 𝑷𝒊𝒋
Such properties are easily obtainable with 

Popular electronic structure software packages

𝑃𝑖𝑗
𝐿𝑍,𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐

exp −
2𝜋𝐻𝑖𝑗

2

ℏ𝑣 𝐻𝑖𝑖
′ −𝐻𝑗𝑗

′
exp −

𝜋

2ℏ

𝑍𝑖𝑗
3 𝑡𝑚𝑖𝑛

ሷ𝑍𝑖𝑗 𝑡𝑚𝑖𝑛

𝑃𝑖𝑗
𝐿𝑍,𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐

Electronic coupling

Diabatic energy Adiabatic energy

2nd derivative

Belyaev, A. K.; Lebedev, O. V. Phys. Rev. A 2011, 84 (1), 014701
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NAC-Free NAMD in Silicon Nanoclusters

• Studied hot electron relaxation in H- and F-

terminated silicon nanocrystals

• Computations are carried out using the Libra software 

package interfaced with the DFTB+ program

• Effect capping atom mass and electronegativity on

the NAMD is investigated

Akimov, A. V. J. Comput. Chem. 2016, 37 (17), 1626–1649

https://github.com/Quantum-Dynamics-Hub/libra-code

• Effect of nanocrystal size on NAMD is also

considered

Aradi, B et al. J. Phys. Chem. A 2007, 111 (26), 5678–5684.
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Hydrogen termination Fluorine termination

𝑃𝑖𝑗 = exp −
𝜋

2ℏ

𝑍𝑖𝑗
3 𝑡𝑚𝑖𝑛

ሷ𝑍𝑖𝑗 𝑡𝑚𝑖𝑛

Central question: How does the choice of capping atom affect NA transition probability?

Chemical identity strongly effects 

energy gaps / density of states

Silicon Nanocrystal termination options

Smaller energy gaps

Faster energy fluctuation

Larger energy gaps

Slower energy fluctuation

Mass primarily effects the energy 

gap fluctuations

Effect of Capping Atom
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Keep identity fixed

Swap atomic masses

4x slow down

6-7x slow down

Mass vs. Chemical Identity
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(fs) 1 eV 2 eV 3 eV

Si26H36 (0.8 nm) 103 126 101

Si66H40 (1.5 nm)* 115 - 150 52 (1.3 eV) -

Si105H94 (1.5 nm) 182 95 82

Si359H214 (2.2 nm) 59 64 72

(fs) 1 eV 2 eV 3 eV

Si26F36 (0.8 nm) 3025 1998 1889

Si66F40 (1.5 nm)** 444 / 493 472 / 704 528 / 1136

Si105F94 (1.5 nm) 199 270 280

Si220F120 (2.2 nm)** 268 / 290 277 / 442 263 / 623

Si359F214 (2.2 nm) 118 150 142

Size Effect

Hydrogen Termination

Fluorine Termination

** Wong, J. C.; Li, L.; Kanai, Y. JPCC 2018, 122, 29526−29536.* Reeves, K. G. et al. Nano Lett. 2015, 15 (10), 6429–6433
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Summary

• A cost-effective algorithm is developed for computing nonadiabatic dynamics 

in large chemical systems

• The cost of nonadiabatic dynamics is only slightly greater than the cost of a 

molecular dynamics trajectory

• A key advantage is that the new method naturally incorporates decoherence

• We find that hot electron cooling becomes faster as silicon quantum dots 

becomes larger. Hot electron cooling is slower when fluorine is used as the 

capping atom

• Slower dynamics fluorine termination options is rationalized by larger energy 

gaps and slower gap fluctuations 
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