

VISTA Seminar

Seminar 74

September 4, 2024 10:00 am – 11:30 am EDT / 3:00 – 4:30 pm BST London / 4:00 pm – 5:30 pm CEST Paris / 10 pm – 11:30 pm CST Beijing

TOC:

1. Presenter 1: Dr. Maksim Kulichenko, Los Alamos National Laboratory,	
USA	.page 2
2. Presenter 2: Dr. Sreeja Loho Choudhury, Goethe University Frankfurt,	
Germany	. page 3
3. How to connect	page 4

Advancing Quantum Simulations with Machine Learning and Graph Theory

Maksim Kulichenko

Los Alamos National Laboratory, T-1 (Physics and Chemistry of Materials), Los Alamos, NM, USA. Email: <u>maxim@lanl.gov</u>

Machine learning is rapidly transforming the landscape of quantum simulations, offering new possibilities for modeling dynamical processes at atomic resolution. Modern ML models go beyond near-equilibrium ground state simulations and can deal with complex reactive events and excited state dynamics. In my talk, I will present recent advancements made at the Theoretical Division, LANL, in the area of ML-assisted quantum simulations. First, I will discuss the application of machine learning potentials to dynamical and reactive simulations. Next, I will address the limitations of purely ML-based models and discuss strategies to enhance their performance by integrating them with approximate quantum models. Finally, I will showcase our latest findings in graph-based quantum dynamics, a promising approach that achieves nearly linear scaling, enabling quantum simulations of extremely large systems.

Decoherence in molecular systems with structured spectral densities studied with Gaussian wavepacket propagation

Sreeja Loho Choudhury

Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Germany Email: <u>dreamysreeja@gmail.com</u>

We investigate the time scale of decoherence in complex molecular systems following laser excitation [1]. Vibronic coupling Hamiltonians in conjunction with realistic, structured spectral densities are employed in order to track decoherence on a typical time scale of femtoseconds. Tensor network methods, notably the Gaussian-based Multi-Configuration Time-Dependent Hartree approach [2], are used to obtain accurate decoherence estimates obtained from the time-evolving purity. Finite temperature is included via the thermofield dynamics approach. We focus on a donor-acceptor system that has recently been studied [1], comprising tens of vibrational degrees of freedom. This system is subject to a coherent excitation energy transfer (EET) process and exhibits irreversible decay features despite the finite dimensionality. Numerical decoherence decay is compared with analytical estimates for pure dephasing in spin-boson systems [3-5]. The transition between Gaussian vs. exponential purity decay is discussed.

References:

- [1] M. Asido et al., Phys. Chem. Chem. Phys. 24, 1795 (2022).
- [2] P. Eisenbrandt, M. Ruckenbauer and I. Burghardt, J. Chem. Phys. 149, 174102 (2018).
- [3] O. Prezhdo and P. Rossky, Phys. Rev. Lett. 81, 5294 (1998).
- [4] B. Guo and I. Franco, J. Phys. Chem. Lett. 8, 4289 (2017).
- [5] M. A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, Springer (2007).

How to connect

Alexey Akimov is inviting you to a scheduled Zoom meeting.

Topic: VISTA, Seminar 74 Time: Sep 4, 2024 10:00 AM Eastern Time (US and Canada)

Join Zoom Meeting https://buffalo.zoom.us/j/92788064450?pwd=EuCyDpJvJ0uo5EYnqYa2tUhO9dAGQU.1

Meeting ID: 927 8806 4450 Passcode: 831918