Accelerating quantum dynamics simulations with machine learning

Alexei Kananenka

(akanane@udel.edu)

MoISSI workshop "Machine-Learning in Quantum and Nonadiabatic Dynamics" Buffalo, August 16, 2024

Acknowledgments

Kananenka group

- Luis Herrera Rodriguez
- Kennet Espinosa
- Kyle Billings
- Aarti
- Nikhil Maroli
- Aritri Biswas
- Natalia Munoz
- James Fitzerald

Collaborators

- Pavlo Dral (Xiamen)
- Arif Ullah (Anhui U.)

Machine learning for molecular dynamics

PES

<u>Most common:</u> Use ML to get PES (U) faster than solving ESP Use in classical or AIMD

 $-\frac{dU}{dx} = F = ma$

Our work: Assume U is known solve QD problem

$$i\hbar\frac{d}{dt}\Psi=(T+U)\Psi$$

Unke et al., Chem. Rev. 121, 10142-10186 (2021)

There is no shortage of methods for quantum dynamics simulations

Numerically exact methods are computationally expensive

Perturbative methods limited to certain regimes

Quantum-classical often inaccurate *long-time*

Approximate methods are reasonably accurate for shorttime dynamics

Fenna-Matthews-Olson population dynamics

- Exact: 5.5 h and 23 Gb of RAM
- Approx.: 30 sec and <0.1 Mb of RAM

- Exact: 2 min and 5 Mb of RAM
- Approx.: 30 sec and <0.1 Mb of RAM

Can we use accurate short-time information to "extrapolate" to longer times?

Physics-based methods: GQME

Time evolution of the reduced density operator

$$\frac{d\rho_s(t)}{dt} = \frac{i}{\hbar} L_s \rho_s(t) - \int_0^t K(\tau) \rho_s(t-\tau) d\tau$$

Memory kernel K(t):

- Environmental effects
- N²·N² dimension
- Very difficult (impossible) to obtain in the exact form for realistic (anharmonic) systems
- If known long-time dynamics can be obtained by solving the GQME

The spin-boson model

$$H = \epsilon \sigma_z + \Delta \sigma_x + \sigma_z \sum_{\alpha} g_{\alpha} (b_{\alpha}^{\dagger} + b_{\alpha}) + \sum_{\alpha} \omega_{\alpha} b_{\alpha}^{\dagger} b_{\alpha}$$

J. Chem. Phys. 150, 244109 (2019)

Physics-based methods: transfer tensor method

Dynamical map: $\rho(t_k) = \mathcal{E}_k \rho(0)$

Transfer tensor:
$$T_k = \mathcal{E}_k - \sum_{m=1}^{k-1} T_{k-m} \mathcal{E}_m$$

Propagation: $\rho(t_m) = \mathbf{T} \otimes [\rho(t_{m-1}) \dots \rho(t_{m-k})]$

Requires N⁴ calculations to produce dynamical maps

Spin-boson model

Phys. Rev. Lett. 112, 110401 (2014)

TTM with approximate quantum-classical input

Population difference for two-level system coupled to dissipative environment

TTM works well even when input is not from the exact method

AAK, C.-Y. Hsieh, J. Cao, E. Geva, J. Phys. Chem. Lett. 7, 4809 (2016)

Where is memory coming from?

Reduction to

Generalized Quantum Master Equation

$$\frac{d\rho_s(t)}{dt} = \frac{i}{\hbar} L_s \rho_s(t) - \int_0^t K(\tau) \rho_s(t)(t-\tau) d\tau$$

non-Markovian dynamics is a result of reduction used to focus on "relevant" subsystem

1.0 0.8 0.0 Uopulation 0.4

Markovian: future time-evolution is fully determined by the present state of the system

Schrödinger equation

 $i\hbar \frac{d}{dt}\Psi = H_{total}\Psi$

Memory is a property of environment which determines the physical behavior of the subsystem Our approach: time-series forecasting with data-driven models

What we want:

- Must be single-step accurate
- Must be faster than direct

"exact" QD calculation (e.g.,

HEOM)

- "Short times" should be short
- Minimum work to get the input

L. Rodriguez and AAK, J. Phys. Chem. Lett. 12, 2476 (2021)

FMO dimer dynamics with convolutional neural network

2,500,000 trainable parameters Trained on ~5,000,000 0.2 ps trajectories

1->2 population difference in molecular dimer (from FMO): input 2x2 density matrix

L. Rodriguez and AAK, J. Phys. Chem. Lett. 12, 2476 (2021)

Transferability

Input data consisted of dynamics data starting from the excited state

$$\rho_s = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

The trained CNN model also works for the initial mixed state

$$\rho_s = \begin{pmatrix} 0.5 & 0\\ 0 & 0.5 \end{pmatrix}$$

L. Rodriguez and AAK, J. Phys. Chem. Lett. 12, 2476 (2021)

More machine learning models

Benchmarking 22 most popular ML models:

- Feed-forward NNs
- Convolutional NNs
- Recurrent NNs (a): simple RNN (b), LSTM (b), GRU (c)
- Bidirectional RNNs
- Convolutional Recurrent NNs
- Kernel ridge regression models with kernels:
 - Gaussian
 - Matern (*n*=1-4)
 - Exponential
 - Periodic-decaying

Fixed number of trainable parameters (NN): 500,000-530,000

Kernel ridge regression

Prediction for input $x' \qquad f(x') =$

 $f(x') = \sum_{i=1}^{N_{train}} \alpha_i K(x', x_i)$ Regression (Kernel function coefficient

Regression coefficients are determined by "training"

$$min_{\alpha} \sum_{i=1}^{N_{train}} (f(x_i) - y_i)^2 + \lambda \alpha^T K \alpha$$

- Training is expensive for large data sets, N³
- Fixed size input (unlike RNNs)
- Few kernels exist for time-series data

Kernel functions

Spin-boson data set

$$H = \epsilon \sigma_z + \Delta \sigma_x + \sigma_z \sum_{\alpha} g_{\alpha} (b_{\alpha}^{\dagger} + b_{\alpha}) + \sum_{\alpha} \omega_{\alpha} b_{\alpha}^{\dagger} b_{\alpha}$$

Ohmic spectral density:

$$J(\omega) = 2\lambda \frac{\omega \omega_c}{\omega^2 - {\omega_c}^2}$$

Use HEOM to generate RDMs for:

$$\frac{\epsilon}{\Delta} = \{0,1\} \qquad \frac{\omega_c}{\Delta} = \{1,2,3,\dots,10\} \qquad t\Delta$$
$$\beta\Delta = \{0.1,0.25,0.5,0.75,1.0\} \qquad \frac{\lambda}{\Delta} = \{0.1,0.2,0.3,\dots,1.0\}$$

0.5

0.0

-0.5

 $\left(\right)$

5

10

15

20

 $\langle \hat{\sigma}_z(t) \rangle$

A. Ullah, L. Rodriguez, P. O. Dral, and AAK, Front. Physics 11, 1223973 (2023)

Symmetric spin-boson system

Lowest single-time step prediction error 2.10⁻⁴ for KRR with Matern-4 kernel

Asymmetric spin-boson system

Lowest single-time step prediction error 1.2.10⁻³ for KRR with the Gaussian kernel

Accuracy vs running time

Choosing the memory: accuracy vs cost tradeoff

Convolutional neural network model

How to choose memory?

- Too short memory leads to sizable errors
- Too long memory requires more costly input generation
- Future work: Extract from RNNs

L. Rodriguez and AAK, J. Phys. Chem. Lett. 12, 2476 (2021)

Transformers

Attention Is All You Need Noam Shazeer* Jakob Uszkoreit* Ashish Vaswani* Niki Parmar* **Google Brain** Google Research **Google Research Google Brain** usz@google.com avaswani@google.com noam@google.com nikip@google.com Llion Jones* Aidan N. Gomez* [†] Łukasz Kaiser* **Google Research** Google Brain University of Toronto llion@google.com lukaszkaiser@google.com aidan@cs.toronto.edu

Illia Polosukhin^{* ‡} illia.polosukhin@gmail.com

A. Viswani et al., NIPS 2017

Driving paradigm shift in AI

- RNNs are sequential (slow), short-term memory
 - Introduced to improve/accelerate processing of long sequences (can do infinite in principle)
 - 70% ArXiv papers on AI last 2 years
 - conversational chat boxes, search engines
- Transformers use attention mechanism for context (parallel processing)

"General-purpose computer that is also trainable and efficient to run on our computer hardware..." A. Karpathy

(https://youtu.be/9uw3F6rndnA?si=3lctTgxKDzjFpKSV)

How transformers work: attention mechanism

A. Viswani et al., NIPS 2017

Self-attention layer

Concatenates output of each head

 $Z_1, Z_2, \ldots, Z_{Nheads}$

generate self-attention matrix as weighted sum over input values

$$Z_{i} = softmax\left(\frac{Q_{i}K_{i}^{T}}{\sqrt{d_{k}}}\right)V_{i}$$

Each self-attention head generates queries, keys, values

$$Q_i = XW_i^q$$
, $K_i = XW_i^k$, $V_i = XW_i^v$

Transformer neural network for quantum dynamics

L. Rodriguez and AAK, under review

Positional encoding

- No explicit time information in the self-attention layer
- PE creates representation of time

$$PE_{j,k} = \begin{cases} \sin(t_j\omega_k), k \text{ is even} \\ \cos(t_j\omega_k), k \text{ is odd} \end{cases}$$

$$\omega_k = \frac{1}{1000^{2k}/d_p}$$

Non-trainable PE (extensions to trainable PE exist)

Asymmetric spin-boson system

Lowest single-time step prediction error 7.5.10⁻³ Number of trainable parameters: 1,918,018

L. Rodriguez and **AAK**, under review

Symmetric spin-boson system

Lowest single-time step prediction error 4.3.10⁻⁴

L. Rodriguez and **AAK**, under review

Conclusions

- ML can be an efficient way to simulate long-time quantum dynamics
- KRR is the fastest most accurate method for this, but they are restricted to fixed-size input (need to know the memory)
- RNNs work with input of different size: CGRU is the best of them
- Transformers can reach accuracy of best KRR models

Papers, codes, and data sets

L. Rodriguez and AAK, J. Phys. Chem. Lett. 12, 2476 (2021)

L. Rodriguez, A. Ullah, P. O. Dral, AAK, Mach. Learn.: Sci. Technol. 3 045016 (2022)

L. Rodriguez and **AAK**, (under review)

A. Ullah, L. Rodriguez, P. O. Dral, and AAK, Front. Physics 11, 1223973 (2023)

TLS and FMO dynamics data sets: https://doi.org/10.25452/figshare.plus.c.6389553

Github: https://github.com/kananenka-group

Transformers tutorial (Luis): https://github.com/leherrer/Transformer_QD/tree/main

