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Helicenes are molecules synthesized by forming a sigma chemical bond in the excited state from 

a (poly)aromatic stilbene derivative. The reaction mechanism and yield in synthetic experiments 

are not well understood, hindering scalable synthesis despite their promising applications. Running 

numerous non-adiabatic molecular dynamics trajectories at the quantum mechanical level is 

prohibitively expensive for analyzing known chemistries and exploring new ones. Deep neural 

networks, trained as quantum mechanics surrogates, offer accuracy at a fraction of the 

computational cost, especially through developments like diabatic-neural network potentials that 

learn smoother diabatic surfaces. This study describes training and using DANN potentials, trained 

on Mixed-Reference Spin Flip DFT energies, forces, and couplings, to investigate the trans-cis 

isomerization of helicene precursors and the photo-assisted ring-closure Mallory reaction. The 

study highlights the role of enhanced sampling and gradient-based adversarial attacks on 

uncertainty in creating training data, and the correlation between NN-driven simulations and 

experimental reaction yields of helicene synthesis. 
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Nonadiabatic molecular dynamics (NA-MD) simulations can effectively model excited-state 

dynamics in solar energy materials but face challenges in nanoscale systems due to complex 

electronic structure calculations. Even methods like density functional theory (DFT) or time-

dependent DFT (TD-DFT) can be impractical for long simulations, specially with hybrid 

functionals. Machine learning (ML) has been increasingly used to reduce computational costs, but 

most models focus on specific properties, requiring large datasets, and costly training, particularly 

for nanoscale systems. 

In this presentation, I will introduce a conceptually simpler yet novel and general ML strategy 

from our group for constructing the Kohn-Sham (KS) Hamiltonian matrix at a desired level of 

theory. We observed that the KS Hamiltonian from a converged charge density maps smoothly 
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from a simple non-self-consistent atomic density guess. Using this, we map an initial guess KS 

Hamiltonian from one theory level, such as PBE, to a converged KS Hamiltonian at another level, 

like B3LYP or HSE06. This approach requires fewer training data points, accelerates calculations 

with high accuracy, and is scalable and applicable to various nanoscale materials. I will also 

demonstrate how atomic orbital matrices, even when obtained at a low level of theory, can be used 

as feature vectors, bypassing the need for neural network for feature extraction. Additionally, I 

will show our implementation of a user-friendly interface in Libra, making this method accessible 

and practical for a wide range of users. Finally, I will demonstrate how this model, when applied 

to NA-MD simulations of hot-carrier relaxation dynamics, produces timescales within the error 

margins of conventional methods. 

 


