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I will present our latest methods and tools for accelerating 

nonadiabatic dynamics with machine learning (ML).[1] They 

are the result of the eight-year effort[2-3] to design the fast and 

robust active learning protocol to build data-efficient machine 

learning models for trajectory surface hopping.[1] This protocol 

has the following key innovations and advantages:[1] 

• depending on a system and reference electronic-structure method, the users can get the final 

results as fast as after a couple of days on a single GPU! 

• multi-state learning model which has unrivaled accuracy for excited state properties (accuracy 

is often better than for models targeting only ground state!). Models can be used for TSH of 

multiple molecules (not just for a single molecule!) 

• gapMD for efficient sampling of the vicinity of conical intersection 

• samplings based on uncertainty in probabilities 

This protocol and underlying methods are based on open-source MLatom (MLatom.com with many 

tutorials),[4] which was recently extended to support surface-hopping dynamics[5], also with the 

universal AIQM1[6] method yielding fast and reasonable photodynamics without the need for training. 

Deeper integration with Newton-X[7] to support more TSH algorithms is underway as well as 

integrating the new protocol for cost-efficient generation of the nonlinear time-resolved spectra from 

nonadiabatic dynamics trajectories[8]. An increasing number of such simulations can be performed 

online at XACScloud.com which I will use for demonstration of the MLatom capabilities. 

Beyond on-the-fly surface hopping dynamics, we explored ML approaches for accelerating,[9-10] 

learning trajectories as a function of time,[11] and learning the entire trajectories[12] of the quantum 

dissipative dynamics. These are based on the MLQD program[13]. 

General discussion about the research in this field is given in our review[14] and book chapters[15-

17]. 
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