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Machine learning (ML) provides tools to both 

accelerate [1-4] and analyze [5-7] nonadiabatic 

(NA) molecular dynamics (MD) simulations.   

Ab initio quality ML force fields (FF) allow us to 

perform long MD simulations and observe rare 

atomic rearrangements. A 100 ps structural 

rearrangement of a metallic particle on a 2D 

substrate creates a long-lived hot-electron state that 

can rationalize plasmon driven photochemistry 

commonly catalyzed by metallic nanocrystals [1]. 

Fluctuations of structure of metal halide 

perovskites (MHPs) around point defects lead to appearance of very deep trap levels that can be 

both detrimental and beneficial for optoelectronic performance [2]. Sliding and distortions of 

grain boundaries in MHPs take nanoseconds and have a significant influence on charge carrier 

lifetimes [3]. 

To accelerate NA-MD simulation we use the MD trajectory generated with a ML force field, to 

compute NA couplings for a small fraction (2%) of geometries along the trajectory and 

interpolate the NA coupling for the remaining 98% geometries. This is particularly important for 

MHPs that exhibit complex MD with strongly anharmonic motions and many timescales. The 

method generates accurate NA-MD results with over an order of magnitude computational 

saving. [4] 

We use unsupervised ML to analyze NA-MD and uncover nontrivial correlations [5-7]. The I-I-I 

angle is the key structural parameter in MAPbI3 [6] and CsPbI3 [7], the most popular MHPs, 

governing the NA coupling and the bandgap, although the Pb-I-Pb angle is discussed most. We 

discover that, surprisingly, MHP structure is much more important that motions, even though the 

NA coupling depends explicitly on atomic velocity. Also surprisingly, the MA+ and Cs+ cations 

strongly influence charge carrier dynamics, even though they do not contribute to electron and 

hole wavefunctions.  

Combining supervised and unsupervised ML [5], we show that mutual information can be used 

for feature selection and significant reduction of dimensionality of ML models of NA 

Hamiltonians. Focusing on CsPbI3 we uncovered that chemical environment of a single element 

is sufficient in predicting the NA Hamiltonian. The analysis allows us to reduce a typical 360-

parameter model used for a ML force-field to just a 12-parameter NA Hamiltonian model.  

NA-MD is a valuable tool for studying excited state processes. Overcoming its high 

computational cost through simple ML models allow us to streamline NA-MD simulations, and 

expand accessible system size and simulation time. 
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